8.某四棱錐的三視圖如圖所示,該四棱錐的表面積是(  )
A.20+2$\sqrt{5}$B.14+4$\sqrt{5}$C.26D.12+2$\sqrt{5}$

分析 由三視圖得幾何體是四棱錐并畫出直觀圖,由三視圖判斷出線面的位置關系,并求出幾何體的高和側(cè)面的高,分別求出各個側(cè)面和底面的面積,即可得到答案.

解答 解:由三視圖得幾何體是四棱錐P-ABCD,如圖所示:
且PE⊥平面ABCD,底面ABCD是矩形,AB=4、AD=2,
面PDC是等腰三角形,PD=PC=3,
則△PDC的高為$\sqrt{{3}^{2}-{2}^{2}}$=$\sqrt{5}$,
所以△PDC的面積為:$\frac{1}{2}$×4×$\sqrt{5}$=2$\sqrt{5}$,
因為PE⊥平面ABCD,所以PE⊥BC,
又CB⊥CD,PE∩CD=E,所以BC⊥面PDC,
即BC⊥PC,同理可證AD⊥PD,
則兩個側(cè)面△PAD、△PBC的面積都為:$\frac{1}{2}$×2×3=3,
側(cè)面△PAB的面積為:$\frac{1}{2}$×4×$\sqrt{(\sqrt{5})^{2}+{2}^{2}}$=6,且底面ABCD的面積為:4×2=8,
所以四棱錐P-ABCD的表面積S=2$\sqrt{5}$+2×3+6+8=20+2$\sqrt{5}$,
故選A.

點評 本題考查由三視圖求幾何體的表面積,由三視圖正確復原幾何體、判斷出幾何體的結(jié)構特征是解題的關鍵,考查空間想象能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.在平行四邊形ABCD中,若$|{\overrightarrow{AB}-\overrightarrow{AD}}|=|{\overrightarrow{AB}+\overrightarrow{AD}}|$,則平行四邊形ABCD是( 。
A.矩形B.梯形C.正方形D.菱形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知等比數(shù)列{an}的前n項和為Sn,若S2=2a2+3,S3=2a3+3,則公比q的值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.數(shù)字1,2,3,…,n(n≥2)的任意一個排列記作(a1,a2,…,an),設Sn為所有這樣的排列構成的集合.集合An={(a1,a2,…,an)∈Sn|任意整數(shù)i,j,1≤i<j≤n,都有ai+i≤aj-j};集合Bn={(a1,a2,…,an}∈Sn|任意整數(shù)i,j,1≤i<n,都有ai+i≤aj+j}.
(Ⅰ)用列舉法表示集合A3,B3
(Ⅱ)求集合An∩Bn的元素個數(shù);
(Ⅲ)記集合Bn的元素個數(shù)為bn.證明:數(shù)列{bn}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知圓心為C的圓過點A(-2,2),B(-5,5),且圓心在直線l:x+y+3=0上
(Ⅰ)求圓心為C的圓的標準方程;
(Ⅱ)過點M(-2,9)作圓的切線,求切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個焦點是F1,F(xiàn)2,點P($\sqrt{2}$,1)在橢圓C上,且|PF1|+|PF2|=4
(Ⅰ)求橢圓C的方程;
(Ⅱ)設點P關于x軸的對稱點為Q,M是橢圓C上一點,直線MP和MQ與x軸分別相交于點E,F(xiàn),O為原點.證明:|OE|•|OF|為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.過點A(0,2)且與圓(x+3)2+(y+3)2=18切于原點的圓的方程是(x-1)2+(y-1)2 =2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知平面向量$\overrightarrow{a}$=(-1,2)與$\overrightarrow$=(3k-1,1)互相垂直,則k的值為( 。
A.$\frac{1}{6}$B.1C.3D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.lg2+2lg5=( 。
A.1+lg5B.2+lg5C.2D.1

查看答案和解析>>

同步練習冊答案