【題目】有甲、乙兩個盒子,甲盒子里有個紅球,乙盒子里有個紅球和個黑球,現從乙盒子里隨機取出個球放入甲盒子后,再從甲盒子里隨機取一球,記取到的紅球個數為個,則隨著的增加,下列說法正確的是( )
A.增加,增加B.增加,減小
C.減小,增加D.減小,減小
科目:高中數學 來源: 題型:
【題目】已知函數.
(I)若曲線存在斜率為-1的切線,求實數a的取值范圍;
(II)求的單調區(qū)間;
(III)設函數,求證:當時, 在上存在極小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,將斜邊長為的等腰直角沿斜邊上的高折成直二面角,為中點.
(1)求二面角的余弦值;
(2)為線段上一動點,當直線與平面所成的角最大時,求三棱錐外接球的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】魚卷是泉州十大名小吃之一,不但本地人喜歡,而且深受外來游客的贊賞.小張從事魚卷生產和批發(fā)多年,有著不少來自零售商和酒店的客戶當地的習俗是農歷正月不生產魚卷,客戶正月所需要的魚卷都會在上一年農歷十二月底進行一次性采購小張把去年年底采購魚卷的數量x(單位:箱)在的客戶稱為“熟客”,并把他們去年采購的數量制成下表:
采購數x |
| ||||
客戶數 | 10 | 10 | 5 | 20 | 5 |
(1)根據表中的數據作出頻率分布直方圖,并估計采購數在168箱以上(含168箱)的“熟客”人數;
(2)若去年年底“熟客”們采購的魚卷數量占小張去年年底總的銷售量的,估算小張去年年底總的銷售量(同一組中的數據用該組區(qū)間的中點值為代表);
(3)由于魚卷受到游客們的青睞,小張做了一份市場調查,決定今年年底是否在網上出售魚卷,若不在網上出售魚卷,則按去年的價格出售,每箱利潤為20元,預計銷售量與去年持平;若在網上出售魚卷,則需把每箱售價下調2至5元,且每下調m元()銷售量可增加1000m箱,求小張今年年底收入Y(單位:元)的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的幾何體中,四邊形是菱形,是矩形,平面,,,,為的中點.
(Ⅰ)求證:平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)設為線段上的動點,二面角的平面角的大小為30°,求線段的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“搜索指數”是網民通過搜索引擎,以每天搜索關鍵詞的次數為基礎所得到的統(tǒng)計指標.“搜索指數”越大,表示網民對該關鍵詞的搜索次數越多,對該關鍵詞相關的信息關注度也越高.下圖是2017年9月到2018年2月這半年中,某個關鍵詞的搜索指數變化的走勢圖.
根據該走勢圖,下列結論正確的是( )
A. 這半年中,網民對該關鍵詞相關的信息關注度呈周期性變化
B. 這半年中,網民對該關鍵詞相關的信息關注度不斷減弱
C. 從網民對該關鍵詞的搜索指數來看,去年10月份的方差小于11月份的方差
D. 從網民對該關鍵詞的搜索指數來看,去年12月份的平均值大于今年1月份的平均值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線l的參數方程為(其中t為參數,).在以原點O為極點,x軸的非負半軸為極軸所建立的極坐標系中,曲線C的極坐標方程為.設直線l與曲線C相交于A,B兩點.
(1)求曲線C和直線l的直角坐標方程;
(2)已知點,求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】皮埃爾·德·費馬,法國律師和業(yè)余數學家,被譽為“業(yè)余數學家之王”,對數學界做出了重大貢獻,其中在1636年發(fā)現了:若是質數,且互質,那么的次方除以的余數恒等于1,后來人們稱該定理為費馬小定理.依此定理若在數集中任取兩個數,其中一個作為,另一個作為,則所取兩個數不符合費馬小定理的概率為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com