設(shè)n為正整數(shù),拋物線y=n(n+1)x2-(2n+1)x+1在x軸上截得的線段長(zhǎng)為an,則________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)上有一點(diǎn)列P1(x1,y1),P2(x2,y2)…,Pn(xn,yn)…,對(duì)一切正整數(shù)n,點(diǎn)Pn在函數(shù)
y=3x+
13
4
的圖象上,且Pn的橫坐標(biāo)構(gòu)成以-
5
2
為首項(xiàng),-1為公差的等差數(shù)列{xn}.
(Ⅰ)求點(diǎn)Pn的坐標(biāo);
(Ⅱ)設(shè)拋物線列C1,C2,C3,…Cn,…中的每一條的對(duì)稱軸都垂直于x軸,拋物線Cn的頂點(diǎn)為Pn,且過點(diǎn)Dn(0,n2+1),記與拋物線Cn相切于點(diǎn)Dn的直線的斜率為Kn,求
1
k1k2
+
1
k2k3
+…+
1
knkn+1
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)頂點(diǎn)在坐標(biāo)原點(diǎn),開口向上的拋物線經(jīng)過A0(1,1),過A0作拋物  線的切線交x軸于B1,過B1點(diǎn)作x軸的垂線交拋物線于A1,過A1作拋物線的切線交x軸于B2,…,過An(xn,yn)作拋物線的切線交x軸于Bn+1(xn+1,0)
(1)求{xn},{yn}的通項(xiàng)公式;
(2)設(shè)an=
1
1+xn
+
1
1-xn+1
,數(shù)列{an}的前n項(xiàng)和為Tn.求證:Tn>2n-
1
2

(3)設(shè)bn=1-log2yn,若對(duì)任意正整數(shù)n,不等式(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)≥a
2n+3
成立,求正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•閔行區(qū)二模)過坐標(biāo)原點(diǎn)O作傾斜角為60°的直線交拋物線Γ:y2=x于P1點(diǎn),過P1點(diǎn)作傾斜角為120°的直線交x軸于Q1點(diǎn),交Γ于P2點(diǎn);過P2點(diǎn)作傾斜角為60°的直線交x軸于Q2點(diǎn),交Γ于P3點(diǎn);過P3點(diǎn)作傾斜角為120°的直線,交x軸于Q3點(diǎn),交Γ于P4點(diǎn);如此下去….又設(shè)線段OQ1,Q1Q2,Q2Q3,…,Qn-1Qn,…的長(zhǎng)分別為a1,a2,a3,…,an,…,數(shù)列{an}的前n項(xiàng)的和為Sn
(1)求a1,a2;
(2)求an,Sn;
(3)設(shè)bn=aan(a>0且a≠1),數(shù)列{bn}的前n項(xiàng)和為Tn,若正整數(shù)p,q,r,s成等差數(shù)列,且p<q<r<s,試比較Tp•Ts與Tq•Tr的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定整數(shù)n≥2,設(shè)M0(x0,y0)是拋物線y2=nx-1與直線y=x的一個(gè)交點(diǎn).試證明對(duì)任意正整數(shù)m,必存在整數(shù)k≥2,使(
x
m
0
,y
m
0
)為拋物線y2=kx-1與直線y=x的一個(gè)交點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案