雙曲線(xiàn)
y2
4
-
x2
b2
=1(b>0)的離心率為
2
,則此雙曲線(xiàn)的焦點(diǎn)到漸近線(xiàn)的距離為
 
考點(diǎn):雙曲線(xiàn)的簡(jiǎn)單性質(zhì)
專(zhuān)題:直線(xiàn)與圓,圓錐曲線(xiàn)的定義、性質(zhì)與方程
分析:運(yùn)用離心率公式,計(jì)算可得b=2,即有雙曲線(xiàn)的方程和焦點(diǎn)坐標(biāo)及漸近線(xiàn)方程,再由點(diǎn)到直線(xiàn)的距離公式,計(jì)算即可得到所求值.
解答: 解:雙曲線(xiàn)
y2
4
-
x2
b2
=1(b>0)的離心率為
2

即有e=
4+b2
2
=
2
,
解得b=2,
即雙曲線(xiàn)的方程為y2-x2=4,
即焦點(diǎn)為(0,±2
2
),
漸近線(xiàn)方程為y=±x,
則雙曲線(xiàn)的焦點(diǎn)到漸近線(xiàn)的距離為d=
|2
2
|
1+1
=2.
故答案為:2.
點(diǎn)評(píng):本題考查雙曲線(xiàn)的方程和性質(zhì),主要考查離心率公式和漸近線(xiàn)方程的運(yùn)用,同時(shí)考查點(diǎn)到直線(xiàn)的距離公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a∈[0,2π),則滿(mǎn)足
1+sin2a
=sina+cosa的a的取值范圍是( 。
A、[0,
π
2
]
B、[0,π]
C、[0,
4
]
D、[0,
4
]∪[
4
,2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)、g(x)的定義域分別為DJ,DE,且DJ⊆DE.若對(duì)于任意x⊆DJ,都有g(shù)(x)=f(x),則稱(chēng)函數(shù)g(x)為f(x)在DE上的一個(gè)延拓函數(shù).設(shè)f(x)=ex(x+1)(x<0),g(x)為f(x)在R上的一個(gè)延拓函數(shù),且g(x)是奇函數(shù),給出以下命題:
①當(dāng)x>0時(shí),g(x)=e-x(x-1);
②函數(shù)g(x)有5個(gè)零點(diǎn);
③g(x)>0的解集為(-1,0)∪(1,+∞);
④函數(shù)g(x)的極大值為1,極小值為-1;
⑤?x1,x2∈R,都有|g(x1)-g(x2)|<2
其中正確的命題是
 
(填上所有正確的命題序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

寫(xiě)出求解二元一次方程組
3x-2y=8
4x+y=7
的一個(gè)算法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線(xiàn)C1:y2=4x,雙曲線(xiàn)C2
x2
a2
-
y2
b2
=1(a>0,b>0),若C1的焦點(diǎn)恰為C2的右焦點(diǎn),則2a+b的最大值為( 。
A、
5
B、5
C、
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知面積為S的凸四邊形中,四條邊長(zhǎng)分別記為a1,a2,a3,a4,點(diǎn)P為四邊形內(nèi)任意一點(diǎn),且點(diǎn)P到四邊的距離分別記為h1,h2,h3,h4,若
a1
1
=
a2
2
=
a3
3
=
a4
4
=k,則h1+2h2+3h3+4h4=
2S
k
類(lèi)比以上性質(zhì),體積為y的三棱錐的每個(gè)面的面積分別記為Sl,S2,S3,S4,此三棱錐內(nèi)任一點(diǎn)Q到每個(gè)面的距離分別為H1,H2,H3,H4,若
S1
1
=
S2
2
=
S3
3
=
S4
4
=K,則H1+2H2+3H3+4H4=( 。
A、
4V
K
B、
3V
K
C、
2V
K
D、
V
K

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列:2×
1
2
,3×
1
4
,4×
1
8
,5×
1
16
…(n+1)×
1
2n
,求數(shù)列的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的可導(dǎo)函數(shù)f(x)=
1
3
x3+
1
2
ax2+2bx+c,當(dāng)x∈(0,1)時(shí)取得極大值,當(dāng)x∈(1,2)時(shí),取得極小值,若(1-t)a+b+t-3>0恒成立,則實(shí)數(shù)t的取值范圍為( 。
A、(2,+∞)
B、[2,+∞)
C、(-∞,
5
4
D、(-∞,
5
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用圖形表示下列定積分:
(1)
2
1
lnxdx;
(2)
0
-1
exdx.

查看答案和解析>>

同步練習(xí)冊(cè)答案