13.給出下列命題:
①橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1與$\frac{{x}^{2}}{9-k}$+$\frac{{y}^{2}}{25-k}$=1(0<k<9)有相等的焦距;
②“直線與雙曲線相切”是“直線與雙曲線只有一個公共點”的充分不必要條件;
③已知P是曲線$\left\{\begin{array}{l}{x=3cosθ}\\{y=4sinθ}\end{array}\right.$(θ為參數(shù),0≤θ≤π)上一點,坐標原點為O,直線PO的傾斜角為$\frac{π}{4}$,則P點坐標是($\frac{3\sqrt{2}}{2}$,2$\sqrt{2}$);
④直線y=mx+1-m與橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1的位置關系隨著m的變化而變化;
⑤雙曲線$\frac{{x}^{2}}{{a}^{2}}$$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩個焦點為F1,F(xiàn)2,若雙曲線上存在一點P,滿足|PF1|=3|PF2|,則雙曲線離心率的取值范圍(1,2].
其中正確命題的所有序號有①②⑤.

分析 對5個命題分別進行判斷,即可得出結論.

解答 解:①橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1與$\frac{{x}^{2}}{9-k}$+$\frac{{y}^{2}}{25-k}$=1(0<k<9)有相等的焦距8,正確;
②“直線與雙曲線相切”是“直線與雙曲線只有一個公共點”的充分不必要條件,正確;
③已知P是曲線$\left\{\begin{array}{l}{x=3cosθ}\\{y=4sinθ}\end{array}\right.$(θ為參數(shù),0≤θ≤π)上一點,坐標原點為O,直線PO的傾斜角為$\frac{π}{4}$,不是參數(shù)的取值,故不正確;
④直線y=mx+1-m過定點(1,1)在橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1的內(nèi)部,故直線y=mx+1-m與橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1的位置關系是相交,不正確;
⑤設P點的橫坐標為x
∵|PF1|=3|PF2|,P在雙曲線右支(x≥a)
根據(jù)雙曲線的第二定義,可得3e(x-$\frac{{a}^{2}}{c}$)=e(x+$\frac{{a}^{2}}{c}$)
∴ex=2a
∵x≥a,∴ex≥ea
∴2a≥ea,∴e≤2
∵e>1,∴1<e≤2,即雙曲線離心率的取值范圍(1,2],正確.
所以正確命題的所有序號有①②⑤.
故答案為①②⑤.

點評 本題考查曲線與方程,考查圓錐曲線,考查學生分析解決問題的能力,綜合性強.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.在鈍角△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足b2+c2-a2=bc,$\overrightarrow{AB}$•$\overrightarrow{BC}$>0,a=$\frac{{\sqrt{3}}}{2}$,則b+c的取值范圍是( 。
A.$(1,\frac{3}{2})$B.$(\frac{{\sqrt{3}}}{2},\frac{3}{2})$C.$(\frac{1}{2},\frac{3}{2})$D.$(\frac{1}{2},\frac{3}{2}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.集合A中含有三個元素0,-1,x,且x2∈A,則實數(shù)x的值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=x2+2ax+2,x∈[-5,5].
(1)當a=-1時,求函數(shù)f(x)的最大值和最小值;
(2)當a∈R時,求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知非空集合A、B,A={x|log${\;}_{\frac{1}{5}}$(x2-2x-3)>x2-2x-9},A⊆B,則集合B可以是( 。
A.(-1,0)∪(4,6)B.(-2,-1)∪(3,4)C.(-3,3)D.(-3,-1)∪(4,6)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如表給出了某校500名12歲男孩中用隨機抽樣得出的120人的身高(單位cm).
 區(qū)間界限[122,126)[126,130)[130,134)[134,138)[138,142)[142,146)
人數(shù)  510  22 3320 
 區(qū)間界限[146,150)[150,154)[154,158)   
 人數(shù) 11 5   
(1)列出樣本頻率分布表﹔
(2)畫出頻率分布直方圖﹔
(3)估計身高小于134cm的人數(shù)占總人數(shù)的百分比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.函數(shù)y=$\frac{1}{(x-1)^{2}}$的單調(diào)減區(qū)間是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設點(a,b)是區(qū)間$\left\{\begin{array}{l}{x+y-4≤0}\\{x>0}\\{y>0}\end{array}\right.$內(nèi)的隨機點,函數(shù)f(x)=ax2-4bx+1在區(qū)間[1,+∞)上的增函數(shù)的概率為(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設x,y滿足約束條件$\left\{\begin{array}{l}{x+2y≤4}\\{x-y≤1}\\{x+2≥0}\end{array}\right.$,則目標函數(shù)z=2x-y的最大值為3.

查看答案和解析>>

同步練習冊答案