【題目】設(shè)橢圓的焦點(diǎn)在軸上.

(1)若橢圓的焦距為1,求橢圓的方程;

(2)設(shè)分別是橢圓的左、右焦點(diǎn),為橢圓上第一象限內(nèi)的點(diǎn),直線軸于點(diǎn),并且.證明:當(dāng)變化時(shí),點(diǎn)在定直線上.

【答案】(1);(2)證明見解析.

【解析】

試題分析:(1)根據(jù)焦距為,,解得,從而求得橢圓方程;(2)設(shè)點(diǎn)的坐標(biāo)為,利用直線的方程求得點(diǎn)的坐標(biāo),將坐標(biāo)代入,化簡得,代入橢圓方程,求得,且,所以點(diǎn)在定直線上.

試題解析:

(1)依題意,,即,

所以橢圓的方程為.............................2分

(2)設(shè),其中,

因?yàn)橹本軸于點(diǎn),所以,

故直線的斜率,直線的斜率,.....................5分

直線的方程為點(diǎn)的坐標(biāo)為,

所以直線的斜率為,...........................8分

由于,所以

化簡得..............................10分

因?yàn)?/span>為橢圓上第一象限內(nèi)的點(diǎn),將上式代入,得

,且,所以點(diǎn)在定直線上.........................12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某海域有兩個(gè)島嶼,島在島正東4海里處,經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線是曲線,曾有漁船在距島、島距離和為8海里處發(fā)出過魚群。以所在直線為軸,的垂直平分線為軸建立平面直角坐標(biāo)系

1求曲線的標(biāo)準(zhǔn)方程;

2某日,研究人員在兩島同時(shí)用聲納探測儀發(fā)出不同頻率的探測信號傳播速度相同,兩島收到魚群在處反射信號的時(shí)間比為,問你能否確定處的位置即點(diǎn)的坐標(biāo)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過點(diǎn),圓的圓心在圓的內(nèi)部,且直線被圓所截得的弦長為.點(diǎn)為圓上異于的任意一點(diǎn),直線軸交于點(diǎn),直線軸交于點(diǎn).

1)求圓的方程;

2)求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值與最小值;

2)若在上存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值與最小值

(2)若在上存在,使得成立的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知焦點(diǎn)在軸的橢圓的離心率與雙曲線的離心率互為倒數(shù),且過點(diǎn).

1求橢圓方程;

2若直線與橢圓交于不同的兩點(diǎn),點(diǎn),有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為奇函數(shù)

(1)比較的大小,并說明理由.(提示:

(2)若,且恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高二某班50名學(xué)生在一次百米測試中,成績?nèi)慷冀橛?3秒到18秒之間,將測試結(jié)果按如下方式分成五組,第一組,第二組,第五組,如圖是按上述分組方法得到的頻率分布直方圖.

(1)請根據(jù)頻率分布直方圖估計(jì)該組數(shù)據(jù)的眾數(shù)和中位數(shù)(精確到0.1);

(2)從成績介于兩組的人中任取2人,求兩人分布來自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題:已知實(shí)數(shù),若關(guān)于不等式非空解集,則,寫出該命題的逆命題、否命題、逆否命題,并判斷這些命題的真假.

查看答案和解析>>

同步練習(xí)冊答案