對(duì)定義域分別是F,G的函數(shù)y=f(x),y=g(x),規(guī)定:
函數(shù)
已知函數(shù)f(x)=x2,g(x)=alnx(a∈R)。
(1)求函數(shù)h(x)的解析式;
(2)對(duì)于實(shí)數(shù)a,函數(shù)h(x)是否存在最小值,如果存在,求出其最小值;如果不存在,請(qǐng)說明理由。
解:(1)因?yàn)楹瘮?shù)f(x)=x2的定義域F=(-∞,+∞),
函數(shù)g(x)=alnx的定義域G=(0,+∞),
所以;
(2)當(dāng)x≤0時(shí),函數(shù)h(x)=x2單調(diào)遞減,
所以函數(shù)h(x)在(-∞,0]上的最小值為h(0)=0
當(dāng)x>0時(shí),h(x)=x2+alnx
若a=0,函數(shù)h(x)=x2在(0,+∞)上單調(diào)遞增,此時(shí),函數(shù)h(x)不存在最小值
若a>0,因?yàn)閔'(x)=
所以函數(shù)h(x)=x2+alnx在(0,+∞)上單調(diào)遞增,
此時(shí),函數(shù)h(x)不存在最小值,
若a<0,因?yàn)閔'(x)=
所以函數(shù)h(x)=x2+alnx在上單調(diào)遞減,在上單調(diào)遞增
此時(shí),函數(shù)h(x)的最小值為
因?yàn)?IMG style="VERTICAL-ALIGN: middle" border=0 src="http://thumb.zyjl.cn/pic1/upload/papers/g02/20111213/201112130915493281494.gif">
 
所以當(dāng)-2e≤a<0時(shí),
當(dāng)a<-2e時(shí),
綜上可知,當(dāng)a>0時(shí),函數(shù)h(x)沒有最小值;
當(dāng)-2e≤a≤0時(shí),函數(shù)h(x)的最小值為h(0)=0;
當(dāng)a<-2e時(shí),函數(shù)h(x)的最小值為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)定義域分別是F、G的函數(shù)y=f(x)、y=g(x),規(guī)定:函數(shù)h(x)=
f(x)+g(x),當(dāng)x∈F且x∈G 
f(x),當(dāng)x∈F且x∉G 
g(x),當(dāng)x∉F且x∈G

已知函數(shù)f(x)=x2,g(x)=alnx(a∈R).
(1)求函數(shù)h(x)的解析式;
(2)對(duì)于實(shí)數(shù)a,函數(shù)h(x)是否存在最小值,如果存在,求出其最小值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省衡陽八中高三(下)第九次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

對(duì)定義域分別是F、G的函數(shù)y=f(x)、y=g(x),規(guī)定:函數(shù)h(x)=

已知函數(shù)f(x)=x2,g(x)=alnx(a∈R).
(1)求函數(shù)h(x)的解析式;
(2)對(duì)于實(shí)數(shù)a,函數(shù)h(x)是否存在最小值,如果存在,求出其最小值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年廣東省梅州市大埔縣虎山中學(xué)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

對(duì)定義域分別是F、G的函數(shù)y=f(x)、y=g(x),規(guī)定:函數(shù)h(x)=

已知函數(shù)f(x)=x2,g(x)=alnx(a∈R).
(1)求函數(shù)h(x)的解析式;
(2)對(duì)于實(shí)數(shù)a,函數(shù)h(x)是否存在最小值,如果存在,求出其最小值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省廣州市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

對(duì)定義域分別是F、G的函數(shù)y=f(x)、y=g(x),規(guī)定:函數(shù)h(x)=

已知函數(shù)f(x)=x2,g(x)=alnx(a∈R).
(1)求函數(shù)h(x)的解析式;
(2)對(duì)于實(shí)數(shù)a,函數(shù)h(x)是否存在最小值,如果存在,求出其最小值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:醴陵市模擬 題型:解答題

對(duì)定義域分別是F、G的函數(shù)y=f(x)、y=g(x),規(guī)定:函數(shù)h(x)=
f(x)+g(x),當(dāng)x∈F且x∈G 
f(x),當(dāng)x∈F且x∉G 
g(x),當(dāng)x∉F且x∈G

已知函數(shù)f(x)=x2,g(x)=alnx(a∈R).
(1)求函數(shù)h(x)的解析式;
(2)對(duì)于實(shí)數(shù)a,函數(shù)h(x)是否存在最小值,如果存在,求出其最小值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案