將函數(shù)f(x)=2sin的圖象向左平移個單位,得到函數(shù)y=g(x)的圖象.若y=g(x)在[]上為增函數(shù),則ω的最大值為( )
A.1
B.2
C.3
D.4
【答案】分析:函數(shù)f(x)=2sin 的圖象向左平移 個單位,得到函數(shù)y=g(x)的表達式,然后利用在 上為增函數(shù),說明 ,利用周期公式,求出ω的不等式,得到ω的最大值.
解答:解:函數(shù) f(x)=2sin的圖象向左平移 個單位,
得到函數(shù)y=g(x)=2sinωx,y=g(x)在 上為增函數(shù),
所以 ,即:ω≤2,所以ω的最大值為:2.
故選B.
點評:本題是基礎(chǔ)題,考查由y=Asin(ωx+φ)的部分圖象確定其解析式,注意函數(shù)的周期與單調(diào)增區(qū)間的關(guān)系,考查計算能力,?碱}型,題目新穎.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)f(x)=2sin(ωx-
π
3
)(ω>0)的圖象向左平移
π
個單位,得到函數(shù)y=g(x)的圖象,若y=g(x)在[0,
π
4
]上為增函數(shù),則ω的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)f(x)=2sin(2x-θ)-3的圖象F按向量
a
=(
π
6
,3)
,平移得到圖象F′,若F′的一條對稱軸是直線x=
π
4
,則θ的一個可能取值是( 。
A、-
π
6
B、-
π
3
C、
π
2
D、
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)f(x)=2sin(2x+
π
4
)的圖象向右平移φ(φ>0)個單位,再將圖象上每一點橫坐標(biāo)縮短到原來的
1
2
倍,所得圖象關(guān)于直線(
π
8
,0)對稱,則φ的最小正值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)f(x)=2sin(2x+
π
3
)-3的圖形按向量
.
a
=(m,n)平移后得到函數(shù)g(x)的圖形,滿足g(
π
4
-x)=g(
π
4
+x)和g(-x)+g(x)=0,則向量
.
a
的一個可能值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)f(x)=2sin(2x-θ)-3的圖象F向右平移
π
6
,再向上平移3個單位,得到圖象F′,若F′的一條對稱軸方程是x=
π
4
,則θ的一個可能。ā 。
A、-
π
6
B、-
π
3
C、
π
2
D、
π
3

查看答案和解析>>

同步練習(xí)冊答案