已知(n∈N*),數(shù)列{an}前n項(xiàng)的和為Sn,則S2013的值為( )
A.2013
B.0
C.
D.
【答案】分析:由二倍角公式可得=sin,可周期為3,前三項(xiàng)的和為0,而2013=671×3,可得S2013的值為0.
解答:解:由二倍角公式可得=sin
由周期公式可得T==3,而=,
=,=0,
故S2013=a1+a2+a3+…+a2013=
671×(a1+a2+a3)=0
故選B
點(diǎn)評(píng):本題考查數(shù)列的求和問題,涉及三角函數(shù)的化簡(jiǎn)以及函數(shù)的周期性,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)數(shù)列{an} 滿足Sn+Sn-1=tan2+2(n≥2,t>0),a1=1,其中Sn是數(shù){an} 的前n項(xiàng)和.
(1)求a2及通項(xiàng)an;
(2)記數(shù)列{
1anan+1
}的前n項(xiàng)和為Tn,若Tn<2對(duì)所有的n∈N+都成立,求證:0<t≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•南京一模)已知函數(shù)f(x)=2+
1
x
.?dāng)?shù)列{an}中,a1=a,an+1=f(an)(n∈N*).當(dāng)a取不同的值時(shí),得到不同的數(shù)列{an},如當(dāng)a=1時(shí),得到無窮數(shù)列1,3,
7
3
,
17
7
,…;當(dāng)a=-
1
2
時(shí),得到有窮數(shù)列-
1
2
,0.
(1)求a的值,使得a3=0;
(2)設(shè)數(shù)列{bn}滿足b1=-
1
2
bn=f(bn+1)(n∈N*)
,求證:不論a取{bn}中的任何數(shù),都可以得到一個(gè)有窮數(shù)列{an};
(3)求a的取值范圍,使得當(dāng)n≥2時(shí),都有
7
3
an
<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知n2(n≥4且n∈N*)個(gè)正數(shù)排成一個(gè)n行n列的數(shù)陣:
            第1列     第2列    第3列   …第n列
第1行        a1,1 a1,2 a1,3 …a1,n
第2行        a2,1 a2,2 a2,3 …a2,n
第3行         a3,1a3,2 a3,3 …a3,n

第n行         an,1 an,2 an,3 …an,n
其中ai,k(i,k∈N*,且1≤i≤n,1≤k≤n)表示該數(shù)陣中位于第i行第k列的數(shù),已知該數(shù)陣中各行的數(shù)依次成等差數(shù)列,各列的數(shù)依次成公比為2的等比數(shù)列,已知a23=8,a3,4=20.則a2,2=
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•河南模擬)已知函數(shù)f(x)的導(dǎo)數(shù)f′(x)=2x-9,且f(0)的值為整數(shù),當(dāng)x∈(n,n+1](n∈N*)時(shí),f(x)的值為整數(shù)的個(gè)數(shù)有且只有1個(gè),則n=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省四校高三第二次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知函數(shù)f(x)的導(dǎo)數(shù)f′(x)=2x-9,且f(0)的值為整數(shù),當(dāng)x∈(n,n+1](n∈N*)時(shí),f(x)的值為整數(shù)的個(gè)數(shù)有且只有1個(gè),則n=( )
A.2
B.6
C.8
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案