(2012•包頭三模)△ABC的內(nèi)角A、B、C所對的邊分別為a、b、c,若sinA=
1
3
,b=
3
sinB,則a等于( 。
分析:根據(jù)正弦定理
a
sinA
=
b
sinB
的式子,將題中數(shù)據(jù)直接代入,即可解出a長,得到本題答案.
解答:解:∵△ABC中,sinA=
1
3
,b=
3
sinB,
∴根據(jù)正弦定理
a
sinA
=
b
sinB
,得
a
1
3
=
3
sinB
sinB

解之得a=
3
3

故選:D
點評:本題給出三角形中A的正弦和邊角關(guān)系式,求a之長.著重考查了運用正弦定理解三角形的知識,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•包頭三模)設(shè)x,y滿足線性約束條件
x-2y+3≥0
2x-3y+4≤0
y≥0
,若目標函數(shù)z=ax+by(其中a>0,b>0)的最大值為3,則
1
a
+
2
b
的最小值為
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•包頭三模)函數(shù)y=sin(ωx+φ)(ω>0且|φ|<
π
2
)
在區(qū)間[
π
6
3
]
上單調(diào)遞減,且函數(shù)值從1減小到-1,那么此函數(shù)圖象與y軸交點的縱坐標為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•包頭三模)若曲線y=x2在點(a,a2)(a>0)處的切線與兩個坐標軸圍成的三角形的面積為2,則a等于
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•包頭三模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點為F(2,0),M為橢圓的上頂點,O為坐標原點,且△MOF是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點M分別作直線MA,MB交橢圓于A,B兩點,設(shè)兩直線的斜率分別為k1,k2,且k1+k2=8,證明:直線AB過定點(-
1
2
 , -2
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•包頭三模)設(shè)函數(shù)f(x)=xex,g(x)=ax2+x
(I)若f(x)與g(x)具有完全相同的單調(diào)區(qū)間,求a的值;
(Ⅱ)若當x≥0時恒有f(x)≥g(x),求a的取值范圍.

查看答案和解析>>

同步練習冊答案