1.若兩個正實數(shù)m,n滿足$\frac{9}{m}$+$\frac{4}{n}$=3,則mn的最小值為( 。
A.16B.18C.4.5D.9

分析 利用均值不等式得$\frac{9}{m}$+$\frac{4}{n}$≥2$\sqrt{\frac{9×4}{mn}}$,即可

解答 解:∵$\frac{9}{m}$+$\frac{4}{n}$=3≥2$\sqrt{\frac{9×4}{mn}}$,∴mn≥16.
故選:A,

點評 本題考查了均值不等式的簡單運用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.假設(shè)要抽查某種品牌的850顆種子的發(fā)芽率,抽取60粒進(jìn)行實驗.
利用隨機數(shù)表抽取種子時,先將850顆種子按001,002,…,850進(jìn)行編號,如果從隨機數(shù)表第8行第7列的數(shù)7開始向右讀,請你寫出第二個被檢測的種子的編號567.(下面摘取了隨機數(shù)表第7行至第9行)
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 25  83 92 12 06 76
63 01 63 78 59  16 95 55 67 19  98 10 50 71 75  12 86 73 58 07  44 39 52 38 79
33 21 12 34 29  78 64 56 07 82  52 42 07 44 38  15 51 00 13 42  99 66 02 79 54.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合$A=\{y|y={log_2}x,x>\frac{1}{2}\},B=\{x|x≥2\}$,則下列結(jié)論正確的是( 。
A.-3∈A∩BB.3∉B∪CC.A∪B=BD.A∩B=B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知f(x)是定義在R上的增函數(shù),函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,若對任意的x,y∈R,等式f(y-3)+f($\sqrt{4x-{x}^{2}-3}$)=0恒成立,則$\frac{y}{x}$的取值范圍是[2-$\frac{2\sqrt{3}}{3}$.3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在函數(shù)y=2sin(ωx+φ)(ω>0)的一個周期上,當(dāng)x=$\frac{π}{6}$時,有最大值2,當(dāng)x=$\frac{2π}{3}$時,有最小值-2,則ω=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列命題中真命題的個數(shù)是( 。
(1)對于命題p:?x∈R,使得x2+x-1<0,則?p:?x∈R,均有x2+x-1>0;
(2)“m=-1”是“直線l1:mx+(2m-1)y+1=0與直線l2:3x+my+3=0垂直”的充分不必要條件;
(3)命題p:x≠y,q:sinx≠siny,則p是q的必要不充分條件;
(4)設(shè)函數(shù)f(x)的定義域是R,則“?x∈R,f(x+1)>f(x),”是“函數(shù)f(x)為增函數(shù)”的充要條件.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x+1≥0}\\{x-y+1≤0}\\{x+y-2≤0}\end{array}\right.$,則z=y-2x的最小值為( 。
A.5B.$\frac{1}{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)y=kx+1(k>0)與y=$\frac{x+1}{x}$與圖象的交點為A、B.則|$\overrightarrow{OA}+\overrightarrow{OB}$|的值( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知a=ln$\frac{1}{2}$,b=sin$\frac{1}{2}$,c=2${\;}^{-\frac{1}{2}}$,則a,b,c按照從小到大排列為( 。
A.b<a<cB.a<b<cC.c<b<aD.c<a<b

查看答案和解析>>

同步練習(xí)冊答案