如圖,現(xiàn)要在邊長(zhǎng)為的正方形內(nèi)建一個(gè)交通“環(huán)島”.正方形的四個(gè)頂點(diǎn)為圓心在四個(gè)角分別建半徑為不小于)的扇形花壇,以正方形的中心為圓心建一個(gè)半徑為的圓形草地.為了保證道路暢通,島口寬不小于,繞島行駛的路寬均不小于.

(1)求的取值范圍;(運(yùn)算中
(2)若中間草地的造價(jià)為,四個(gè)花壇的造價(jià)為,其余區(qū)域的造價(jià)為,當(dāng)取何值時(shí),可使“環(huán)島”的整體造價(jià)最低?

(1)  ,(2) .

解析試題分析:(1)解決應(yīng)用題問(wèn)題首先要解決閱讀問(wèn)題,具體說(shuō)就是要會(huì)用數(shù)學(xué)式子正確表示數(shù)量關(guān)系,本題根據(jù)半徑、島口寬、路寬限制條件列方程組,即可得的取值范圍;其難點(diǎn)在路寬最小值的確定,觀察圖形易知路寬最小值應(yīng)在正方形對(duì)角線連線上取得,(2)本題解題思路清晰,就是根據(jù)草地、花壇、其余區(qū)域的造價(jià)列函數(shù)關(guān)系式,再由導(dǎo)數(shù)求最值.難點(diǎn)在所列函數(shù)解析式是四次,其導(dǎo)數(shù)為三次,在判定區(qū)間導(dǎo)數(shù)符號(hào)時(shí)需細(xì)心確定,要解決這一難點(diǎn),需充分利用因式分解簡(jiǎn)化式子結(jié)構(gòu).
試題解析:(1)由題意得,            4分
解得.         7分
(2)記“環(huán)島”的整體造價(jià)為元,則由題意得

,         10分
,則,
,解得,               12分
列表如下:


9
(9,10)
10
(10,15)
15

 

0

0

 

極小值

 
所以當(dāng),取最小值.
答:當(dāng)時(shí),可使“環(huán)島”的整體造價(jià)最低.            14分
考點(diǎn):利用導(dǎo)數(shù)求最值,解不等式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),為常數(shù)),直線與函數(shù)、的圖象都相切,且與函數(shù)圖象的切點(diǎn)的橫坐標(biāo)為
(1)求直線的方程及的值;
(2)若 [注:的導(dǎo)函數(shù)],求函數(shù)的單調(diào)遞增區(qū)間;
(3)當(dāng)時(shí),試討論方程的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)設(shè)函數(shù)的極值.
(2)證明:上為增函數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),且是函數(shù)的一個(gè)極小值點(diǎn).
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)求在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(Ⅰ)若在x=處的切線與直線4x+y=0平行,求a的值;
(Ⅱ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)的圖象與x軸交于A,B兩點(diǎn),線段AB中點(diǎn)的橫坐標(biāo)為,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知a,b為常數(shù),a¹0,函數(shù)
(1)若a=2,b=1,求在(0,+∞)內(nèi)的極值;
(2)①若a>0,b>0,求證:在區(qū)間[1,2]上是增函數(shù);
②若,,且在區(qū)間[1,2]上是增函數(shù),求由所有點(diǎn)形成的平面區(qū)域的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),其中是自然對(duì)數(shù)的底數(shù),.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(Ⅰ)當(dāng)a=4時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)g(x)在區(qū)間上的最小值;
(Ⅲ)若存在,使方程成立,求實(shí)數(shù)a的取值范圍(其中e=2.71828是自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知
(1)當(dāng)時(shí),求上的值域;
(2)求函數(shù)上的最小值;
(3)證明: 對(duì)一切,都有成立

查看答案和解析>>

同步練習(xí)冊(cè)答案