12.已知等差數(shù)列{an}中,已知a2=3,a1+a5=10.
(1)求數(shù)列{an}通項(xiàng)公式an
(2)求數(shù)列{an}前n項(xiàng)和sn

分析 (1)利用等差數(shù)列通項(xiàng)公式列出方程組,求出首項(xiàng)和公差,由此能求出數(shù)列{an}通項(xiàng)公式an
(2)利用首項(xiàng)和公差,能求出數(shù)列{an}前n項(xiàng)和Sn

解答 解:(1)∵等差數(shù)列{an}中,a2=3,a1+a5=10.
∴$\left\{\begin{array}{l}{{a}_{1}+d=3}\\{{a}_{1}+{a}_{1}+4d=10}\end{array}\right.$,
解得a1=1,d=2,
∴an=1+(n-1)×2=2n-1.
(2)∵a1=1,d=2,
∴Sn=$n+\frac{n(n-1)}{2}d$=n2

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知球O有個(gè)內(nèi)接正方體,且球O的表面積為36π,則正方體的邊長(zhǎng)為$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=lnx-$\frac{1}{2}{x^2}$,g(x)=$\frac{1-m}{2}{x^2}$+x,m∈R,令F(x)=f(x)+g(x).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若關(guān)于x的不等式F(x)≤mx-1恒成立,求整數(shù)m的最小值;
(3)若m=-1,且正實(shí)數(shù)x1,x2滿足F(x1)=-F(x2),求x1+x2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在直三棱柱ABC-A1B1C1中,AC⊥BC,點(diǎn)M是側(cè)面ABB1A1內(nèi)的一點(diǎn),若MC與平面ABC所成的角為30°,MC與平面ACC1A1所成的角也為30°,則MC與平面BCC1B1所稱的角正弦值為(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若f(x)=5cosx,則f′($\frac{π}{2}$)=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)某三棱錐的三視圖如圖所示,則該三棱錐外接球的表面積為( 。
A.B.C.D.10π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.點(diǎn)(x,y)滿足$\left\{\begin{array}{l}x≥1\\ y≥1\\ x+y≤3\end{array}\right.$,則x2+y2-8x-10y的取值范圍為[-23,-16].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知a>0,b>0且ab=1,則函數(shù)f(x)=ax與g(x)=-logbx的圖象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知兩條直線l1:(a-1)x+2y+1=0,l2:x+ay+3=0.
(1)若l1∥l2,求實(shí)數(shù)a的值;
(2)若l1⊥l2,求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案