已知f(x)=ex-e-x,g(x)=ex+e-x,其中e=2.718….
(1)求[f(x)]2-[g(x)]2的值;
(2)設f(x)•f(y)=4,g(x)•g(y)=8,求
g(x+y)g(x-y)
的值.
分析:(1)利用平方差公式,代入計算可得結(jié)論;
(2)利用f(x)•f(y)=4,g(x)•g(y)=8,可得
g(x+y)-g(x-y)=4
g(x+y)+g(x-y)=8
,解得g(x+y)=6,g(x-y)=2,即可得到結(jié)論.
解答:解:(1)[f(x)]2-[g(x)]2=[f(x)+g(x)]•[f(x)-g(x)]=2ex•(-2e-x)=-4e0=-4.
(2)f(x)•f(y)=(ex-e-x)•(ey-e-y
=ex+y+e-(x+y)-ex-y-e-(x-y)
=g(x+y)-g(x-y)=4,①
g(x)•g(y)=(ex+e-x)(ey+e-y
=ex+y+e-(x+y)+ex-y+e-(x-y)
=g(x+y)+g(x-y)=8.②
聯(lián)立①②得
g(x+y)-g(x-y)=4
g(x+y)+g(x-y)=8

解得g(x+y)=6,g(x-y)=2,
所以
g(x+y)
g(x-y)
=3.
點評:本題考查函數(shù)與方程的綜合運用,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=ex+e-x+2|x|,又不等式f(ax)>f(x-1)在x∈[
1
2
,+∞)
恒成立,則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ex-ax-1.
(1)求f(x)的單調(diào)增區(qū)間;
(2)若f(x)在定義域R內(nèi)單調(diào)遞增,求a的取值范圍;
(3)是否存在a,使f(x)在(-∞,0]上單調(diào)遞減,在[0,+∞)上單調(diào)遞增?若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ex,f(x)的導數(shù)為f'(x),則f'(-2)=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ex-ax(e=2.718…)
(Ⅰ)討論函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間(0,2)上有兩個零點,求a的取值范圍;
(Ⅲ) A(xl,yl),B(x2,y2)是f(x)的圖象上任意兩點,且x1<x2,若總存在xo∈R,使得f′(xo)=
y1-y2x1-x2
,求證:xo>xl

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ex-ax-1.
(1)求f(x)的單調(diào)增區(qū)間;
(2)求證:ex>x+1(x≠0).

查看答案和解析>>

同步練習冊答案