已知數(shù)列的前項(xiàng)和,數(shù)列滿足 .
(Ⅰ)求數(shù)列的通項(xiàng);(Ⅱ)求數(shù)列的通項(xiàng);
(Ⅲ)若,求數(shù)列的前項(xiàng)和.
(Ⅰ);(Ⅱ);(Ⅲ)
【解析】
試題分析:(Ⅰ)由,得當(dāng)時(shí),,當(dāng)時(shí),,不滿足,因此所求.
(Ⅱ)由,,可得遞推公式,所以,,, ,,將上列各式兩邊累加可得,再根據(jù)等差數(shù)列前項(xiàng)和公式可求得(疊加消項(xiàng)法在求數(shù)列的通項(xiàng)、前項(xiàng)和中常常用到,其特點(diǎn)是根據(jù)等式兩邊結(jié)構(gòu)特征,一邊相加可消掉中間項(xiàng),另一邊相加可以得到某一特殊數(shù)列或是常數(shù)).
(Ⅲ)由題意得當(dāng)時(shí),,當(dāng)時(shí),,所以所求,,
將兩式相減得,
從而可求得(錯(cuò)位相減法是求數(shù)列前項(xiàng)和的常用方法,它適用于如果一個(gè)數(shù)列的各項(xiàng)是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列的對(duì)應(yīng)各項(xiàng)之積構(gòu)成的).
試題解析:(Ⅰ)∵,
∴. 2分
∴. 3分
當(dāng)時(shí),,
∴ 4分
(Ⅱ)∵
∴,
,
,
,
以上各式相加得
.
∵ ,
∴. 9分
(Ⅲ)由題意得
∴,
∴,
∴
=,
∴. 13分
考點(diǎn):數(shù)列通項(xiàng)公式,錯(cuò)位相減法求和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(09年濟(jì)寧質(zhì)檢一理)(14分)
已知數(shù)列的前項(xiàng)和為,對(duì)一切正整數(shù),點(diǎn)都在函數(shù)的圖象上,且在點(diǎn)處的切線的斜率為.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前項(xiàng)和;
(Ⅲ)設(shè),,等差數(shù)列的任一項(xiàng),其中是中最小的數(shù),,求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)
已知數(shù)列的前項(xiàng)和為,對(duì)一切正整數(shù),點(diǎn)都在函數(shù)的圖象上,且在點(diǎn)處的切線的斜率為.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前項(xiàng)和;
(Ⅲ)設(shè),,等差數(shù)列的任一項(xiàng),其中是中最小的數(shù),,求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年安徽省合肥市高一下學(xué)期期末考試數(shù)學(xué)卷 題型:填空題
已知數(shù)列的前項(xiàng)和,把
數(shù)列的各項(xiàng)排成三角形形狀如下:記第
行第列上排的數(shù)為,則
_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年安徽省高一下學(xué)期期末考試數(shù)學(xué)卷 題型:填空題
已知數(shù)列的前項(xiàng)和,把數(shù)列的各項(xiàng)排成三角形形狀如下:記第
行第列上排的數(shù)為,則_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:山東省濟(jì)寧五中2010屆高三5月模擬(理) 題型:解答題
已知數(shù)列的前項(xiàng)和為,對(duì)一切正整數(shù),點(diǎn)都在函數(shù)
的圖象上,且在點(diǎn)處的切線的斜率為。
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前項(xiàng)和;
(Ⅲ)設(shè),,等差數(shù)列的任一項(xiàng)
,其中是中最小的數(shù),,求數(shù)列的通項(xiàng)
公式。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com