設(shè)P(x,y)是曲線C:數(shù)學公式為參數(shù),0≤θ<2π)上任意一點,則數(shù)學公式的取值范圍是


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
C
分析:求出圓的普通方程,利用的幾何意義,圓上的點與坐標原點連線的斜率,求出斜率的范圍即可.
解答:解:曲線C:為參數(shù),0≤θ<2π)的普通方程為:(x+2)2+y2=1,
P(x,y)是曲線C:(x+2)2+y2=1上任意一點,則的幾何意義就是圓上的點與坐標原點連線的斜率,
如圖:

故選C.
點評:本題是中檔題,考查圓的參數(shù)方程與普通方程的求法,注意直線的斜率的應(yīng)用,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)P(x,y)是曲線C:
x=-2+cosθ
y=sinθ
(θ為參數(shù),0≤θ≤2π)上任意一點,求
y
x
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)P(x,y)是曲線 
|x|
5
+
|y|
3
=1
上的點,F(xiàn)1(-4,0),F(xiàn)2(4,0),則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•鐘祥市模擬)設(shè)P(x,y)是曲線C:
x2
25
+
y2
9
=1上的點,F(xiàn)1(-4,0),F(xiàn)2(4,0),則|PF1|+|PF2|( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)P(x,y)是曲線C:
x=-2+cosθ
y=sinθ
為參數(shù),0≤θ<2π)上任意一點,則
y
x
的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)P(x,y)是曲線C:x2+y2+4x+3=0上任意一點,則
y
x
的取值范圍是( 。

查看答案和解析>>

同步練習冊答案