已知點M在曲線x2+y2+4x+3=0,點N在不等式組所表示的平面區(qū)域上,那么|MN|的最小值是( )
A.1
B.
C.-1
D.2
【答案】分析:作出可行域,將|MN|的最小值轉化為圓:x2+y2+4x+3=0的圓心C到可行域的最小值,結合圖形,求出|CN|的最小值,減去半徑得|MN|的最小值.
解答:解析:如圖,畫出平面區(qū)域(陰影部分所示),
由圓心C(-2,0)向直線3x+4y-4=0作垂線,圓心C(-2,0)到直線3x+4y-4=0的距離為 =2,
又圓的半徑為1,所以可求得|MN|的最小值是1.
故選A
點評:本題考查簡單線性規(guī)劃的應用、圓方程的綜合應用,解答的關鍵數(shù)形結合的方法,將兩點間的距離最小轉化為點到直線的距離求最值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點M在曲線x2+y2+4x+3=0,點N在不等式組
x-2≤0
3x+4y≥4
y-3≤0
所表示的平面區(qū)域上,那么|MN|的最小值是( 。
A、1
B、
2
10
3
C、
2
10
3
-1
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點M在曲線x2+y2+4x+3=0上,點N在不等式組
x-2≤0
3x+4y≥4
y-3≤0
所表示的平面區(qū)域內,那么|MN|的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年云南省玉溪一中、楚雄一中、昆明三中高三第一次聯(lián)考數(shù)學試卷(文科)(解析版) 題型:選擇題

已知點M在曲線x2+y2+4x+3=0,點N在不等式組所表示的平面區(qū)域上,那么|MN|的最小值是( )
A.1
B.
C.-1
D.2

查看答案和解析>>

科目:高中數(shù)學 來源:2011年廣西桂林市高三第一次調研數(shù)學試卷(理科)(解析版) 題型:選擇題

已知點M在曲線x2+y2+4x+3=0,點N在不等式組所表示的平面區(qū)域上,那么|MN|的最小值是( )
A.1
B.
C.-1
D.2

查看答案和解析>>

同步練習冊答案