(本小題滿分12分)某商店商品每件成本10元,若售價(jià)為25元,則每天能賣出288件,經(jīng)調(diào)查,如果降低價(jià)格,銷售量可以增加,且每天多賣出的商品件數(shù)t與商品單價(jià)的降低值(單位:元,)的關(guān)系是t=.
(1)將每天的商品銷售利潤(rùn)y表示成的函數(shù);
(2)如何定價(jià)才能使每天的商品銷售利潤(rùn)最大?

(1) ;(2)17.

解析試題分析:(1)因?yàn)槊刻斓纳唐蜂N售利潤(rùn)y等于每件的利潤(rùn)乘以每天生產(chǎn)的件數(shù).因?yàn)榻档蛢r(jià)格,銷售量可以增加,且每天多賣出的商品件數(shù)t.而t與商品單價(jià)的降低值(單位:元,)的關(guān)系是t=.所以可得每天的利潤(rùn)與單價(jià)降低值的關(guān)系式.
(2)由(1)求得的函數(shù)關(guān)系式,通過求導(dǎo)求出函數(shù)的極值點(diǎn),以及極大值.在對(duì)比臨界點(diǎn)的值從而可得函數(shù)的最大值以及對(duì)應(yīng)的的值.
試題解析:(1)設(shè)商品降價(jià)元,記商品每天的獲利為,則依題意得

    ()   -6分
(2)根據(jù)(1),有
當(dāng)變化時(shí),的變化如下表:



2

8



0

0



極小

極大

時(shí),取得極大值.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4f/3/jfajf4.png" style="vertical-align:middle;" />,,
所以定價(jià)為元能使一天的商品銷售利潤(rùn)最大.  12分
考點(diǎn):1.函數(shù)的實(shí)際應(yīng)用.2.函數(shù)的最值問題.3.函數(shù)的導(dǎo)數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=2sin ωx-4sin 2+2+a(ω>0,a∈R),且f(x)的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)為2.
(1)求函數(shù)f(x)的最小正周期;
(2)若f(x)在區(qū)間[6,16]上的最大值為4,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

我國(guó)西部某省4A級(jí)風(fēng)景區(qū)內(nèi)住著一個(gè)少數(shù)民族村,該村投資了800萬元修復(fù)和加強(qiáng)民俗文化基礎(chǔ)設(shè)施,據(jù)調(diào)查,修復(fù)好村民俗文化基礎(chǔ)設(shè)施后,任何一個(gè)月內(nèi)(每月按30天計(jì)算)每天的旅游人數(shù)與第x天近似地滿足(千人),且參觀民俗文化村的游客人均消費(fèi)近似地滿足(元).
(1)求該村的第x天的旅游收入(單位千元,1≤x≤30,)的函數(shù)關(guān)系;
(2)若以最低日收入的20%作為每一天的計(jì)量依據(jù),并以純收入的5%的稅率收回投資成本,試問該村在兩年內(nèi)能否收回全部投資成本?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)滿足
(1)求證,并求的取值范圍;
(2)證明函數(shù)內(nèi)至少有一個(gè)零點(diǎn);
(3)設(shè)是函數(shù)的兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)定義域和函數(shù)圖像所過的定點(diǎn);
(2)若已知時(shí),函數(shù)最大值為2,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知偶函數(shù)y=f(x)定義域是[-3,3],當(dāng)時(shí),f(x)=-1.

(1)求函數(shù)y=f(x)的解析式;
(2)畫出函數(shù)y=f(x)的圖象,并利用圖象寫出函數(shù)y=f(x)的單調(diào)區(qū)間和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的定義域;
(2)求的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某地區(qū)注重生態(tài)環(huán)境建設(shè),每年用于改造生態(tài)環(huán)境總費(fèi)用為億元,其中用于風(fēng)景區(qū)改造為億元。該市決定制定生態(tài)環(huán)境改造投資方案,該方案要求同時(shí)具備下列三個(gè)條件:①每年用于風(fēng)景區(qū)改造費(fèi)用隨每年改造生態(tài)環(huán)境總費(fèi)用增加而增加;②每年改造生態(tài)環(huán)境總費(fèi)用至少億元,至多億元;③每年用于風(fēng)景區(qū)改造費(fèi)用不得低于每年改造生態(tài)環(huán)境總費(fèi)用的15%,但不得高于每年改造生態(tài)環(huán)境總費(fèi)用的25%.
,,請(qǐng)你分析能否采用函數(shù)模型y=作為生態(tài)環(huán)境改造投資方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=loga(x+1)-loga(1-x)(a>0,a≠1)
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性,并給出證明;
(3)當(dāng)a>1時(shí),求使f(x)>0的x的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案