已知三點(diǎn)O(0,0),A(-2,1),B(2,1),曲線C上任意一點(diǎn)M(x,y)滿足|+|=•(+)+2.
(1)求曲線C的方程;
(2)動(dòng)點(diǎn)Q(x,y)(-2<x<2)在曲線C上,曲線C在點(diǎn)Q處的切線為l向:是否存在定點(diǎn)P(0,t)(t<0),使得l與PA,PB都不相交,交點(diǎn)分別為D,E,且△QAB與△PDE的面積之比是常數(shù)?若存在,求t的值.若不存在,說(shuō)明理由.
【答案】分析:(1)用坐標(biāo)表示 ,從而可得 +,可求|+|,利用向量的數(shù)量積,結(jié)合M(x,y)滿足|+|=•(+)+2,可得曲線C的方程;
(2)假設(shè)存在點(diǎn)P(0,t)(t<0),滿足條件,則直線PA的方程是y=,直線PB的方程是y=
分類(lèi)討論:①當(dāng)-1<t<0時(shí),l∥PA,不符合題意;②當(dāng)t≤-1時(shí),,,分別聯(lián)立方程組,解得D,E的橫坐標(biāo),進(jìn)而可得△QAB與△PDE的面積之比,利用其為常數(shù),即可求得結(jié)論.
解答:解:(1)由 =(-2-x,1-y),=(2-x,1-y)可得 +=(-2x,2-2y),
∴|+|=,•(+)+2=(x,y)•(0,2)+2=2y+2.
由題意可得=2y+2,化簡(jiǎn)可得 x2=4y.
(2)假設(shè)存在點(diǎn)P(0,t)(t<0),滿足條件,則直線PA的方程是y=,直線PB的方程是y=
∵-2<x<2,∴
①當(dāng)-1<t<0時(shí),,存在x∈(-2,2),使得
∴l(xiāng)∥PA,∴當(dāng)-1<t<0時(shí),不符合題意;
②當(dāng)t≤-1時(shí),,
∴l(xiāng)與直線PA,PB一定相交,分別聯(lián)立方程組
,,解得D,E的橫坐標(biāo)分別是,

∵|FP|=-
=

=×
∵x∈(-2,2),△QAB與△PDE的面積之比是常數(shù)
,解得t=-1,
∴△QAB與△PDE的面積之比是2.
點(diǎn)評(píng):本題考查軌跡方程,考查向量知識(shí)的運(yùn)用,考查分類(lèi)討論的數(shù)學(xué)思想,考查三角形面積的計(jì)算,同時(shí)考查學(xué)生的探究能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三點(diǎn)O(0,0),A(1,0),P(x,y)且設(shè)x≥1,y≠0.
(1)如果選取一點(diǎn)Q,使四邊形OAPQ成為一平行四邊形,則Q的坐標(biāo)是
 

(2)如果還要求AP的中垂線通過(guò)Q點(diǎn),則x,y的關(guān)系是
 

(3)再進(jìn)一步要求四邊形OAPQ是菱形,則x=
 
時(shí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,已知三點(diǎn)O(0,0),A(-1,1),B(1,1),曲線C上任意-點(diǎn)M(x,y)滿足:|
MA
+
MB
|=4-
1
2
OM
•(
OA
+
OB
)

(l)求曲線C的方程;
(2)設(shè)點(diǎn)P是曲線C上的任意一點(diǎn),過(guò)原點(diǎn)的直線L與曲線相交于M,N兩點(diǎn),若直線PM,PN的斜率都存在,并記為kPM,kPN.試探究kPM•kPN的值是否與點(diǎn)P及直線L有關(guān),并證明你的結(jié)論;
(3)設(shè)曲線C與y軸交于D、E兩點(diǎn),點(diǎn)M (0,m)在線段DE上,點(diǎn)P在曲線C上運(yùn)動(dòng).若當(dāng)點(diǎn)P的坐標(biāo)為(0,2)時(shí),|
MP
|
取得最小值,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江西)已知三點(diǎn)O(0,0),A(-2,1),B(2,1),曲線C上任意一點(diǎn)M(x,y)滿足|
MA
+
MB
|=
OM
•(
OA
+
OB
)+2.
(1)求曲線C的方程;
(2)動(dòng)點(diǎn)Q(x0,y0)(-2<x0<2)在曲線C上,曲線C在點(diǎn)Q處的切線為l向:是否存在定點(diǎn)P(0,t)(t<0),使得l與PA,PB都不相交,交點(diǎn)分別為D,E,且△QAB與△PDE的面積之比是常數(shù)?若存在,求t的值.若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江西)已知三點(diǎn)O(0,0),A(-2,1),B(2,1),曲線C上任意一點(diǎn)M(x,y)滿足|
MA
+
MB
|=
MA
•(
OA
+
OB
)+2

(1)求曲線C的方程;
(2)點(diǎn)Q(x0,y0)(-2<x0<2)是曲線C上動(dòng)點(diǎn),曲線C在點(diǎn)Q處的切線為l,點(diǎn)P的坐標(biāo)是(0,-1),l與PA,PB分別交于點(diǎn)D,E,求△QAB與△PDE的面積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年江西省高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知三點(diǎn)O(0,0),A(-2,1),B(2,1),曲線C上任意一點(diǎn)M(x,y)滿足||=
(1)求曲線C的方程;
(2)點(diǎn)Q(x,y)(-2<x<2)是曲線C上動(dòng)點(diǎn),曲線C在點(diǎn)Q處的切線為l,點(diǎn)P的坐標(biāo)是(0,-1),l與PA,PB分別交于點(diǎn)D,E,求△QAB與△PDE的面積之比.

查看答案和解析>>

同步練習(xí)冊(cè)答案