【題目】設(shè).

(1)若,且是實系數(shù)一元二次方程的一根,求的值;

(2)若是純虛數(shù),已知時,取得最大值,求

(3)肖同學(xué)和謝同學(xué)同時獨立地解答第(2)小題,己知兩人能正確解答該題的概率分別是0.80.9,求該題能被正確解答的概率.

【答案】(1) ;(2) (3) .

【解析】

(1)利用復(fù)數(shù)除法的運算法則化簡,再根據(jù)實系數(shù)一元二次方程的性質(zhì)和根與系數(shù)關(guān)系可以求出的值;

(2)設(shè)出復(fù)數(shù)的代數(shù)形式,利用復(fù)數(shù)的除法法則和是純虛數(shù),可得出復(fù)數(shù)的實問部和虛部之間的關(guān)系,再由時,取得最大值,這樣可以求出

(3)求出該題不能被正確解答的概率,然后運用對立事件概率公式求出該題能被正確解答的概率.

(1) .因為是實系數(shù)一元二次方程的一根,所以也是實系數(shù)一元二次方程的一根,因此由根與系數(shù)關(guān)系可知:

,所以的值分別為

(2)設(shè).

是純虛數(shù),所以有

,它表示以為圓心,2為半徑的圓, 的幾何意義是圓上的點到點是距離. 在同一條直線上且同向時,取得最大值, 因為,所以

所以,因此

所以

(3) 該題不能被正確解答的概率為,因此能被正確解答的概率為:

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年年月某市郵政快遞業(yè)務(wù)量完成件數(shù)較2017年月月同比增長,如圖為該市2017年月郵政快遞業(yè)務(wù)量柱狀圖及2018年月郵政快遞業(yè)務(wù)量餅圖,根據(jù)統(tǒng)計圖,解決下列問題

月該市郵政快遞同城業(yè)務(wù)量完成件數(shù)與2017年月相比是有所增大還是有所減少,并計算,2018年月該市郵政快遞國際及港澳臺業(yè)務(wù)量同比增長率;

若年平均每件快遞的盈利如表所示:

快遞類型

同城

異地

國際及港澳臺

盈利

5

25

估計該市郵政快遞在2018年月的盈利是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】哥德巴赫猜想是每個大于2的偶數(shù)可以表示為兩個素數(shù)的和,如,在不超過13的素數(shù)中,隨機(jī)選取兩個不同的數(shù),其和為偶數(shù)的概率是________(用分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】199個自然數(shù)中任取兩個:

恰有一個偶數(shù)和恰有一個奇數(shù);至少有一個是奇數(shù)和兩個數(shù)都是奇數(shù);

至多有一個奇數(shù)和兩個數(shù)都是奇數(shù);至少有一個奇數(shù)和至少有一個偶數(shù).

在上述事件中,是對立事件的是  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)曲線在點處的切線方程為,求的值;

(2)若,時,,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖所示,ABCD是邊長為3的正方形,DE平面ABCD,AFDE,DE=3AF,BE與平面ABCD所成的角為60°.

(1)求證:AC平面BDE;

(2)求二面角F-BE-D的余弦值

(3)設(shè)點M是線段BD上一個動點,試確定點M的位置,使得AM平面BEF,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦點在x軸上,一個頂點為,離心率為,過橢圓的右焦點F的直線l與坐標(biāo)軸不垂直,且交橢圓于A,B兩點.

求橢圓的方程;

設(shè)點C是點A關(guān)于x軸的對稱點,在x軸上是否存在一個定點N,使得C,B,N三點共線?若存在,求出定點的坐標(biāo);若不存在,說明理由;

設(shè),是線段為坐標(biāo)原點上的一個動點,且,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐中,平面,,,,的中點.

(1)證明:平面

(2)設(shè)二面角,,,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,棱長為1,點為線段上的動點(包含線段端點),則下列結(jié)論錯誤的是( )

A. 當(dāng)時,平面

B. 當(dāng)中點時,四棱錐的外接球表面為

C. 的最小值為

D. 當(dāng)時,平面

查看答案和解析>>

同步練習(xí)冊答案