【題目】在直角坐標(biāo)系中xOy中,已知曲線E經(jīng)過點(diǎn)P(1, ),其參數(shù)方程為 (α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線E的極坐標(biāo)方程;
(2)若直線l交E于點(diǎn)A、B,且OA⊥OB,求證: 為定值,并求出這個定值.

【答案】
(1)解:將點(diǎn)P(1, ),代入曲線E的方程: ,

解得a2=3,

所以曲線E的普通方程為 =1,

極坐標(biāo)方程為 =1


(2)解:不妨設(shè)點(diǎn)A,B的極坐標(biāo)分別為A(ρ1,θ),B(ρ2, ),

則代入曲線E的極坐標(biāo)方程,可得 = = ,

為定值


【解析】(1)將點(diǎn)P(1, ),代入曲線E的方程,求出a2=3,可得曲線E的普通方程,即可求曲線E的極坐標(biāo)方程;(2)利用點(diǎn)的極坐標(biāo),代入極坐標(biāo)方程,化簡,即可證明結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知長方體ABCD中, 為DC的中點(diǎn).將△ADM沿AM折起,使得AD⊥BM.
(1)求證:平面ADM⊥平面ABCM;
(2)是否存在滿足 的點(diǎn)E,使得二面角E﹣AM﹣D為大小為 .若存在,求出相應(yīng)的實(shí)數(shù)t;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,已知bcos2 +acos2 = c.
(Ⅰ)求證:a,c,b成等差數(shù)列;
(Ⅱ)若C= ,△ABC的面積為2 ,求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),若以該直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ﹣4cosθ=0.
(1)求直線l與曲線C的普通方程;
(2)已知直線l與曲線C交于A,B兩點(diǎn),設(shè)M(2,0),求| |的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,已知2a= csinA﹣acosC.
(1)求C;
(2)若c= ,求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:若定義域?yàn)镽的函數(shù)f(x)不是偶函數(shù),則x∈R,f(﹣x)≠f(x).命題q:f(x)=x|x|在(﹣∞,0)上是減函數(shù),在(0,+∞)上是增函數(shù).則下列判斷錯誤的是(
A.p為假
B.¬q為真
C.p∨q為真
D.p∧q為假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】調(diào)查表明:甲種農(nóng)作物的長勢與海拔高度、土壤酸堿度、空氣濕度的指標(biāo)有極強(qiáng)的相關(guān)性,現(xiàn)將這三項(xiàng)的指標(biāo)分別記為x,y,z,并對它們進(jìn)行量化:0表示不合格,1表示臨界合格,2表示合格,再用綜合指標(biāo)ω=x+y+z的值評定這種農(nóng)作物的長勢等級,若ω≥4,則長勢為一級;若2≤ω≤3,則長勢為二級;若0≤ω≤1,則長勢為三級,為了了解目前這種農(nóng)作物長勢情況,研究人員隨機(jī)抽取10塊種植地,得到如表中結(jié)果:

種植地編號

A1

A2

A3

A4

A5

(x,y,z)

(1,1,2)

(2,1,1)

(2,2,2)

(0,0,1)

(1,2,1)

種植地編號

A6

A7

A8

A9

A10

(x,y,z)

(1,1,2)

(1,1,1)

(1,2,2)

(1,2,1)

(1,1,1)

(Ⅰ)在這10塊該農(nóng)作物的種植地中任取兩塊地,求這兩塊地的空氣濕度的指標(biāo)z相同的概率;
(Ⅱ)從長勢等級是一級的種植地中任取一塊地,其綜合指標(biāo)為A,從長勢等級不是一級的種植地中任取一塊地,其綜合指標(biāo)為B,記隨機(jī)變量X=A﹣B,求X的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=2,∠ABC=60°,平面ACEF⊥平面ABCD,四邊形ACEF是菱形,∠CAF=60°.
(1)求證:BC⊥平面ACEF;
(2)求平面ABF與平面ADF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,底面為正三角形,側(cè)棱垂直底面,AB=4,AA1=6,若E,F(xiàn)分別是棱BB1 , CC1上的點(diǎn),且BE=B1E,C1F= CC1 , 則異面直線A1E與AF所成角的余弦值為(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案