17.過(guò)拋物線y2=px(p>0)的焦點(diǎn)F作傾斜角為45°的直線交拋物線于A,B兩點(diǎn),若線段AB的長(zhǎng)為8,則p=4.

分析 設(shè)出直線的方程,與拋物線的方程聯(lián)立消去y,進(jìn)而根據(jù)韋達(dá)定理表示出x1+x2和x1x2,進(jìn)而利用利用弦長(zhǎng)公式表示出AB的長(zhǎng),即可求得p.

解答 解:由題意可知過(guò)焦點(diǎn)的直線方程為y=x-$\frac{p}{4}$,代入拋物線y2=px,
消去y可得x2-$\frac{3}{2}$px+$\frac{{p}^{2}}{16}$=0,
設(shè)A(x1,y1),B(x2,y2),則
∴x1+x2=$\frac{3}{2}$p,x1x2=$\frac{{p}^{2}}{16}$
∴|AB|=x1+x2+$\frac{p}{2}$=2p=8
解得p=4,
故答案為:4.

點(diǎn)評(píng) 本題主要考查了拋物線的簡(jiǎn)單性質(zhì).涉及直線與拋物線的關(guān)系時(shí),往往是利用韋達(dá)定理設(shè)而不求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某品牌電視專賣店,在“五一”期間設(shè)計(jì)一項(xiàng)有獎(jiǎng)促銷活動(dòng):每購(gòu)買一臺(tái)電視,即可通過(guò)電腦產(chǎn)生一組3個(gè)數(shù)的隨機(jī)數(shù)組,根據(jù)下表兌獎(jiǎng):
隨機(jī)數(shù)組的特征3個(gè)數(shù)字均相同恰有2個(gè)數(shù)字相同其余情況
獎(jiǎng)金(單位:元)5002000
商家為了了解計(jì)劃的可行性,估計(jì)獎(jiǎng)金數(shù),進(jìn)行了隨機(jī)模擬試驗(yàn),產(chǎn)生20組隨機(jī)數(shù)組,每組3個(gè)數(shù),試驗(yàn)結(jié)果如下所示:
975,146,858,513,277,645,903,756,111,783,
834,527,060,089,221,368,054,669,863,175.
(Ⅰ)請(qǐng)根據(jù)以上模擬數(shù)據(jù)估計(jì):若活動(dòng)期間商家賣出100臺(tái)電視應(yīng)付出獎(jiǎng)金多少元?
(Ⅱ)在以上模擬數(shù)據(jù)的前5組數(shù)中,隨機(jī)抽取2組數(shù),試寫(xiě)出所有的基本事件,并求至少有一組獲獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.定義在R上的函數(shù)y=f(x)在(-∞,2)上是增函數(shù),且y=f(x+2)是偶函數(shù),則( 。
A.f(-1)<f(3)B.f (0)>f(3)C.f (-1)=f (-3)D.f(2)<f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在△ABC中,∠A=60°,AC=1,△ABC的面積為$\frac{\sqrt{3}}{2}$,則BC的長(zhǎng)為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在△ABC中,b=1,c=$\sqrt{3}$,A=$\frac{π}{4}$,則△ABC的面積是$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在平面直角坐標(biāo)系xOy中,以O(shè)x軸為始邊作兩個(gè)銳角α、β,它們的終邊分別與單位圓相交于A、B兩點(diǎn).已知A、B的橫坐標(biāo)分別為x1,x2
(Ⅰ)若x1=$\frac{{3\sqrt{10}}}{10}$,x2=$\frac{{7\sqrt{2}}}{10}$,求2α+β的值;
(Ⅱ)若x1=$\frac{3}{5}$,若角-β終邊與單位圓交于C點(diǎn),且$\overrightarrow{OA}•\overrightarrow{OC}$=0,求sin(α+β).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)(x∈R)滿足f(2)=4,且f(x)的導(dǎo)函數(shù)f′(x)>3,則f(x)<3x-2的解集為( 。
A.(-2,2)B.(-∞,2)C.(-∞,-2)∪(2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$是非零向量,下列命題正確的是( 。
A.($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)B.|$\overrightarrow{a}$-$\overrightarrow$|2=|$\overrightarrow{a}$|2-2|$\overrightarrow{a}$||$\overrightarrow$|+|$\overrightarrow$|2
C.若|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{a}$+$\overrightarrow$|,則$\overrightarrow{a}$與$\overrightarrow$的夾角為60°D.若|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則$\overrightarrow{a}$與$\overrightarrow$的夾角為60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=1,2an+1=2an+p(p為常數(shù),n∈N*).
(Ⅰ)若S3=6,求Sn;
(Ⅱ)若數(shù)列{an}是等比數(shù)列,求實(shí)數(shù)p的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案