已知p:0≤x≤1,q:
1
x
<1,則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既非充分也非必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)不等式的性質,利用充分條件和必要條件的定義進行判斷.
解答: 解:當x=0時,不等式
1
x
<1不成立,即充分性不成立,
當x=-1時,滿足
1
x
<1但0≤x≤1不成立,即必要性不成立,
故p是q的既不充分也不必要條件,
故選:D
點評:本題主要考查充分條件和必要條件的判斷,根據(jù)不等式之間的關系是解決本題的關鍵,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合A={1,2,3},B={1,2,4},則A∩B等于( 。
A、{1,2,4}
B、{2,3,4}
C、{1,2}
D、{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知i是虛數(shù)單位,復數(shù)z=-i,則
1
1-z
的虛部為( 。
A、
1
2
B、
1
2
i
C、-
1
2
D、-
1
2
i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x,y滿足約束條件
1≤x+y≤3
1≤y-x≤3
,則2x-y的最小值為( 。
A、-6B、-4C、-3D、-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=sin(2x+φ)滿足f(x)≥f(
π
3
),則函數(shù)f(x)的單調遞增區(qū)間是( 。
A、[2kπ-
π
6
,2kπ+
π
3
](k∈Z)
B、[2kπ+
π
3
,2kπ+
6
](k∈Z)
C、[kπ-
π
6
,kπ+
π
3
](k∈Z)
D、[kπ+
π
3
,kπ+
6
](k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x、y滿足
2x+3y≥11
x≤4
y≤3
,則z=
y-1
x+2
的取值范圍為(  )
A、[0,
2
3
]
B、[0,1]
C、(-∞,
2
3
]
D、[
2
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若向量
a
=(4,y)(y∈R),則“y=3”是“|
a
|=5”的(  )
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將函數(shù)f(x)=x3+3x2+3x的圖象按向量
a
平移后得到函數(shù)g(x)的圖象,若函數(shù)g(x)滿足g(1-x)+g(1+x)=1,則向量
a
的坐標是( 。
A、(-1,-1)
B、(2,
3
2
C、(2,2)
D、(-2,-
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正三棱柱ABC-A1B1C1中,AB=AA1,D、E分別是棱A1B1、AA1的中點,點F在棱AB上,且AB=4AF.
(1)求證:EF∥平面BDC1;
(2)求證:BC1⊥平面B1CE.

查看答案和解析>>

同步練習冊答案