(2013•婺城區(qū)模擬)“a=2”是“直線y=-ax+2與y=
a
4
x-1
垂直”的( 。
分析:當(dāng)a=2時(shí)兩直線的斜率都存在,故只要看是否滿足k1•k2=-1即可.利用直線的垂直求出a的值,然后判斷充要條件即可.
解答:解:當(dāng)a=2時(shí)直線y=-ax+2的斜率是-2,直線y=
a
4
x-1
的斜率是2,
滿足k1•k2=-1
∴a=2時(shí)直線y=-ax+2與y=
a
4
x-1
垂直,
直線y=-ax+2與y=
a
4
x-1
垂直,則-a•
1
4
a=-1,解得a=±2,
“a=2”是“直線y=-ax+2與y=
a
4
x-1
垂直”的充分不必要條件.
故選A.
點(diǎn)評(píng):本題通過(guò)邏輯來(lái)考查兩直線垂直的判定,必要條件、充分條件與充要條件的判斷,考查基本知識(shí)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•婺城區(qū)模擬)設(shè)m,n是不同的直線,α,β是不同的平面,下列命題中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•婺城區(qū)模擬)在△ABC中,已知
AB
AC
=9,sinB=cosA•sinC,S△ABC=6,P為線段AB上的點(diǎn),且
CP
=x
CA
|
CA
|
+y
CB
|
CB
|
,則xy的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•婺城區(qū)模擬)已知點(diǎn)P是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
左支上一點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線的左、右兩個(gè)焦點(diǎn),且PF1⊥PF2,PF2與兩條漸近線相交于M,N兩點(diǎn)(如圖),點(diǎn)N恰好平分線段PF2,則雙曲線的離心率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•婺城區(qū)模擬)若
1-i1+i
=a+bi(a,b∈R),則a-b的值是
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•婺城區(qū)模擬)已知數(shù)列{an}是公差為1的等差數(shù)列,Sn是其前n項(xiàng)和,若S8是數(shù)列{Sn}中的唯一最小項(xiàng),則{an}數(shù)列的首項(xiàng)a1的取值范圍是
(-8,-7)
(-8,-7)

查看答案和解析>>

同步練習(xí)冊(cè)答案