9.定義在(-1,1)上的函數(shù)f(x)是減函數(shù),且f(1-a)<f(a2-1),則實數(shù)a的取值范圍是0<a<$\sqrt{2}$.

分析 根據(jù)題意,分析可得$\left\{\begin{array}{l}{-1<1-a<1}\\{-1<{a}^{2}-1<1}\\{1-a>{a}^{2}-1}\end{array}\right.$,解可得a的取值范圍,即可得答案.

解答 解:根據(jù)題意,定義在(-1,1)上的函數(shù)f(x)是減函數(shù),且f(1-a)<f(a2-1),
則必有$\left\{\begin{array}{l}{-1<1-a<1}\\{-1<{a}^{2}-1<1}\\{1-a>{a}^{2}-1}\end{array}\right.$,
解可得0<a<$\sqrt{2}$;
故答案為:0<a<$\sqrt{2}$.

點評 本題考查函數(shù)的單調(diào)性的應用,關鍵是利用函數(shù)的單調(diào)性分析得到(1-a)與(a2-1)的大。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的周期為π,且圖象上有一個最低
點為M($\frac{2π}{3}$,-3).
(1)求f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若雙曲線C的頂點和焦點分別為橢圓$\frac{x^2}{9}$+$\frac{y^2}{5}$=1的焦點和頂點,則雙曲線C的方程為( 。
A.$\frac{x^2}{5}-\frac{y^2}{9}=1$B.$\frac{x^2}{9}-\frac{y^2}{5}=1$C.$\frac{x^2}{5}-\frac{y^2}{4}=1$D.$\frac{x^2}{4}-\frac{y^2}{5}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤1}\\{1gx,x>1}\end{array}\right.$,則f(f(10))=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=-x2+2|x|.
(Ⅰ)判斷并證明函數(shù)的奇偶性;
(Ⅱ)寫出函數(shù)f(x)的單調(diào)區(qū)間(不需證明);
(Ⅲ)求f(x)在[-3,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知α,β是關于x的一元二次方程x2+(2m+3)x+m2=0的兩個不相等的實數(shù)根,且滿足$\frac{1}{α}$+$\frac{1}{β}$=-1,則m的值是( 。
A.3或-1B.3C.1D.-3或1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知集合A={-2,-1,0,1,2,3},集合B={x|y=$\sqrt{4-{x}^{2}}$},則A∩B等于( 。
A.[-2,2]B.{-1,0,1}C.{-2,-1,0,1,2}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知集合A={x|x-1≤2},B={x|2<x<2m+1,m∈R}≠∅.
(1)若m=3,求(∁RA)∩B;
(2)若A∪B=A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知函數(shù)f(x)=|x|(2-x),關于x的方程f(x)=m(m∈R)有三個不同的實數(shù)解x1,x2,x3,則x1x2x3的取值范圍為(1-$\sqrt{2}$,0).

查看答案和解析>>

同步練習冊答案