F1、F2是橢圓 x2+2y2=2的兩個焦點,過F2作傾斜角為45°的弦AB,則△ABF1的面積是(  )
A.
2
3
3
B.
4
2
3
C.
4
3
D.
3
4
∵橢圓 x2+2y2=2 
∴a=
2
  b=1 c=1
F1(-1,0)F2(1,0)
AB所在直線L方程:y=x-1
聯(lián)立:
x2+2y2-2=0
y=x-1

解得x1=
4
3
x2=0
y1=
1
3
y2=-1
AB=
(
4
3
-0)
2
+(
1
3
+1)
2
=
4
2
3

點F1(-1,0)到直線L:x-y-1=0的距離d
d=
2

△ABF1的面積=
1
2
×d×AB=
4
3

故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知點P是橢圓
x2
169
+
y2
144
=1
上一動點,點F1,F(xiàn)2是橢圓的左右兩焦點.
(1)求該橢圓的長軸長、右準(zhǔn)線方程;
(2)一拋物線以橢圓的中心為頂點、橢圓的右準(zhǔn)線為準(zhǔn)線,求拋物線標(biāo)準(zhǔn)方程;
(3)當(dāng)∠F1PF2=30°時,求△PF1F2的面積;
(4)點Q是圓F2:(x-5)2+y2=25上一動點,求PF1+PQ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黑龍江)設(shè)F1、F2是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,P為直線x=
3a
2
上一點,△F2PF1是底角為30°的等腰三角形,則E的離心率為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的焦點在x軸,焦距為2
3
,F(xiàn)1,F(xiàn)2是橢圓的焦點,P為橢圓上一點,且|PF1|+|PF2|=4.
(Ⅰ)求此橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)求證:直線y=x+
5
與橢圓C有且僅有一個公共點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,P為直線x=
3a
2
上一點,△F2PF1是底角為30°的等腰三角形,則橢圓E的離心率為
3
4
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2是橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點,P為直線x=-
3
2
a
上一點,△F1PF2是底角為30°的等腰三角形,則E的離心率為(  )
A、
1
2
B、
2
3
C、
3
4
D、
4
5

查看答案和解析>>

同步練習(xí)冊答案