3.某單位擬建一個(gè)扇環(huán)形狀的花壇(如圖所示),按設(shè)計(jì)要求扇環(huán)的周長(zhǎng)為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為x米,圓心角為θ(弧度).
(1)求θ關(guān)于x的函數(shù)關(guān)系式;
(2)已知對(duì)花壇的邊緣(實(shí)線部分)進(jìn)行裝飾時(shí),直線部分的裝飾費(fèi)用為4元/米,弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用之比為y,求y關(guān)于x的函數(shù)關(guān)系式,并求出y的最大值.

分析 (1)根據(jù)扇形的周長(zhǎng)公式進(jìn)行求解即可.
(2)結(jié)合花壇的面積公式,結(jié)合費(fèi)用之間的關(guān)系進(jìn)行求解即可.

解答 解:(1)由題可知30=θ(10+x)+2(10-x),所以θ=$\frac{10+2x}{10+x}$,x∈(0,10)…5
(2)花壇的面積為$\frac{1}{2}$θ(102-x2)=(5+x)(10-x)=-x2+5x+50(0<x<10),
裝飾總費(fèi)用為9θ(10+x)+8(10-x)=170+10x,
所以花壇的面積與裝飾總費(fèi)用之比為y=$\frac{-{x}^{2}+5x+50}{170+10x}$=-$\frac{{x}^{2}-5x-50}{10(17+x)}$.…7
令t=17+x,t∈(17,27)則y=$\frac{39}{10}$-$\frac{1}{10}$(t+$\frac{324}{t}$)≤$\frac{39}{10}$-$\frac{1}{10}$$2\sqrt{324}$=$\frac{3}{10}$,…(10分)
當(dāng)且僅當(dāng)t=18時(shí)取等號(hào),此時(shí)x=1,θ=$\frac{12}{11}$.
(若利用雙勾函數(shù)單調(diào)性求最值的,則同等標(biāo)準(zhǔn)給分,但須說(shuō)明單調(diào)性.)
故當(dāng)x=1時(shí),花壇的面積與裝飾總費(fèi)用之比最大.…12

點(diǎn)評(píng) 本題主要考查函數(shù)的應(yīng)用問(wèn)題,結(jié)合扇形的周長(zhǎng)和面積公式以及函數(shù)的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.四棱錐P-ABCD的底面是邊長(zhǎng)為$2\sqrt{2}$的正方形,高為1,其外接球半徑為$2\sqrt{2}$,則正方形ABCD的中心與點(diǎn)P之間的距離為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{2^x}-\frac{a}{3},x≤0}\\{lnx-2x+a,x>0}\end{array}}$有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(1+ln2,3]B.(ln2,3]C.(0,1+ln2)D.(0,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知A(0,1)和直線l:x=-5,拋物線y2=4x上動(dòng)點(diǎn)P到l的距離為d,則|PA|+d的最小值是( 。
A.6B.$5+\sqrt{2}$C.$4+\sqrt{2}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.對(duì)于平面向量$\overrightarrow a$=(x,y),我們定義它的一種“新模長(zhǎng)”為|x+y|+|x-y|,仍記作$|{\overrightarrow a}$|,即|${\overrightarrow a}$|=|x+y|+|x-y|.在這種“新模長(zhǎng)”的定義下,給出下列命題:
①對(duì)平面內(nèi)的任意兩個(gè)向量$\overrightarrow a,\overrightarrow b$,總有$|{\overrightarrow a-\overrightarrow b}|≤|{\overrightarrow a}|+|{\overrightarrow b}$|;
②設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)P在直線y=x-1上運(yùn)動(dòng),則$|{\overrightarrow{OP}}$|的最小值=1;
③設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)P在圓O:x2+y2=1上運(yùn)動(dòng),則$|{\overrightarrow{OP}}$|的最大值=2;
④設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)P在橢圓$\frac{x^2}{4}+\frac{y^2}{1}$=1上運(yùn)動(dòng),則$|{\overrightarrow{OP}}$|的最小值=2;
寫出所有正確命題的序號(hào)①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=4t\\ y=3t-1\end{array}$(t為參數(shù)),當(dāng)t=0時(shí),曲線C1上對(duì)應(yīng)的點(diǎn)為 P.以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=$\frac{8cosθ}{1-cos2θ}$.
(I)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線C1與C2的公共點(diǎn)為A,B,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.中國(guó)古建筑中的窗飾是藝術(shù)和技術(shù)的統(tǒng)一體,給人于美的享受.如圖(1)為一花窗;圖(2)所示是一扇窗中的一格,呈長(zhǎng)方形,長(zhǎng)30cm,寬26cm,其內(nèi)部窗芯(不含長(zhǎng)方形邊框)用一種條形木料做成,由兩個(gè)菱形和六根支條構(gòu)成,整個(gè)窗芯關(guān)于長(zhǎng)方形邊框的兩條對(duì)稱軸成軸對(duì)稱.設(shè)菱形的兩條對(duì)角線長(zhǎng)分別為xcm和ycm,窗芯所需條形木料的長(zhǎng)度之和為L(zhǎng).
(1)試用x,y表示L;
(2)如果要求六根支條的長(zhǎng)度均不小于2cm,每個(gè)菱形的面積為130cm2,那么做這樣一個(gè)窗芯至少需要多長(zhǎng)的條形木料(不計(jì)榫卯及其它損耗)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年安徽六安一中高一上國(guó)慶作業(yè)二數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)函數(shù),上的常數(shù),若的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2018010106020007197894/SYS201801010602057440966248_ST/SYS201801010602057440966248_ST.005.png">,則取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.根據(jù)正切函數(shù)的圖象,寫出使下列不等式成立的x的集合.
(1)$\frac{\sqrt{3}}{3}$+tanx≥0;
(2)tanx-$\sqrt{3}$≤0.

查看答案和解析>>

同步練習(xí)冊(cè)答案