已知?jiǎng)狱c(diǎn)P與直x=4的距離等于它到定點(diǎn)F(1,0)的距離的2倍,
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)點(diǎn)M(1,1)在所求軌跡內(nèi),且過(guò)點(diǎn)M的直線與曲線C交于A、B,當(dāng)M是線段AB中點(diǎn)時(shí),求直線AB的方程.
(1)設(shè)動(dòng)點(diǎn)P(x,y),由
|x-4|
(x-1)2+y2
=2
,平方整理得
x2
4
+
y2
3
=1
即為軌跡C的方程.
(2)當(dāng)直線AB的斜率不存在時(shí),直線x=1與橢圓交于兩點(diǎn),由圖形的對(duì)稱(chēng)性,
線段AB的中點(diǎn)應(yīng)在x軸上,M點(diǎn)不滿足題意.故直線AB的斜率存在,
設(shè)直線AB的方程為y-1=k(x-1)
設(shè)A(x1,y1),B(x2,y2
x12
4
+
y12
3
= 1
x22
4
+
y22
3
=1
作差得
x12-x22
4
=-
y12-y22
3

k=
y1-y2
x1-x2
=-
3
4
x1+x2
y1+y2
=-
3
4

直線AB的方程為:y-1=-
3
4
(x-1)

即3x+4y-7=0
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)P與直x=4的距離等于它到定點(diǎn)F(1,0)的距離的2倍,
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)點(diǎn)M(1,1)在所求軌跡內(nèi),且過(guò)點(diǎn)M的直線與曲線C交于A、B,當(dāng)M是線段AB中點(diǎn)時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年福建省泉州市南安一中高二(上)年期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知?jiǎng)狱c(diǎn)P與直x=4的距離等于它到定點(diǎn)F(1,0)的距離的2倍,
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)點(diǎn)M(1,1)在所求軌跡內(nèi),且過(guò)點(diǎn)M的直線與曲線C交于A、B,當(dāng)M是線段AB中點(diǎn)時(shí),求直線AB的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案