已知全集U=R,集合A={x∈N|lg(x-1)<1},B={x|(x-3)(7-x)≥0},則集合A∩CUB=( 。
分析:集合A中的不等式右邊的“1”化為lg10,并根據(jù)底數(shù)為10大于1,得到對(duì)數(shù)函數(shù)為增函數(shù),利用對(duì)數(shù)函數(shù)的增減性得到x的范圍,同時(shí)由對(duì)數(shù)函數(shù)的真數(shù)大于0列出不等式,求出不等式的解集得到x的范圍,取兩范圍的公共部分可得出x的范圍,又x為正整數(shù),確定出集合A,由集合B中的不等式左右兩邊同時(shí)除以-1,不等號(hào)方向改變,并根據(jù)兩數(shù)相乘積為負(fù),兩因式異號(hào)轉(zhuǎn)化為兩個(gè)不等式組,求出不等式組的解集得到x的范圍,確定出集合B,由全集U=R,求出集合B的補(bǔ)集,再找出集合A和B補(bǔ)集的公共元素,即可確定出所求的集合.
解答:解:由集合A中的不等式lg(x-1)<1=lg10,
可得x-1<10,解得:x<11,
由x-1>0,解得:x>1,
∴1<x<11,
又x∈N,∴集合A={2,3,4,5,6,7,8,9,10},
由集合B中的不等式(x-3)(7-x)≥0,
變形得(x-3)(x-7)≤0,
解得:3≤x≤7,
∴B={x|3≤x≤7},又全集為U=R,
∴CUB={x|x<3或x>7},
則集合A∩CUB={2,8,9,10}.
故選D
點(diǎn)評(píng):此題屬于以一元二次不等式及其他不等式的解法為平臺(tái),考查了補(bǔ)集及交集的運(yùn)算,涉及的知識(shí)有:對(duì)數(shù)的運(yùn)算性質(zhì),對(duì)數(shù)函數(shù)的增減性,以及不等式的基本性質(zhì),利用了轉(zhuǎn)化的思想,是高考中?嫉念}型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U=R,集合A={x|4≤2x<16},B={x|3≤x<5},求:
(Ⅰ)?U(A∩B)
(Ⅱ)若集合C={x|x>a},且B?C,求實(shí)數(shù)a 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U=R,集合A={x|2x<1},B={x|log3x>0},則A∩(?UB)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U=R,集合M={x|2x>1},集合N={x|log2x>1},則下列結(jié)論中成立的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U=R,集合A={x|(x-1)2≤4},則CUA等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U=R,集合A={-1,0,1},B={x|x2-2x<0},則A∩?UB=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案