2.體積為$\frac{32π}{3}$的球有一個內(nèi)接正三棱錐P-ABC,PQ是球的直徑,∠APQ=60°,則三棱錐P-ABC的體積為(  )
A.$\frac{27\sqrt{3}}{4}$B.$\frac{9\sqrt{3}}{4}$C.$\frac{3\sqrt{3}}{4}$D.$\frac{\sqrt{3}}{4}$

分析 先確定球的半徑,計算△ABC的面積,再計算三棱錐P一ABC的體積.

解答 解:由題意可得球O的半徑為2,如圖,
因為PQ是球的直徑,所以∠PAQ=90°,∠APQ=60°,可得AP=2,
△ABC所在小圓圓心為O′,可由射影定理AP2=PO′•PQ,所以PO′=1,AO′=$\sqrt{3}$,
因為O′為△ABC的中心,所以可求出△ABC的邊長為3,面積為$\frac{9\sqrt{3}}{4}$,
因此,三棱錐P-ABC的體積為V=$\frac{1}{3}×\frac{9\sqrt{3}}{4}×1$=$\frac{3\sqrt{3}}{4}$.
故選:C.

點評 本題考查球的內(nèi)接正三棱錐,考查三棱錐體積的計算,正確計算△ABC的面積是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)f(x)=lg(-x2+4x+5),則該函數(shù)的單調(diào)遞減區(qū)間為[2,5);該函數(shù)在定義域內(nèi)的最大值為lg9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.定義$\frac{n}{{{p_1}+{p_2}+{p_3}+…+{p_n}}}$為n個實數(shù)P1.P2.….Pn的“均倒數(shù)”.已知數(shù)列{an}的前n項的“均倒數(shù)”為$\frac{1}{2n+a}$,前n項和Sn≥S5恒成立,則實數(shù)a的取值范圍是( 。
A.(-18,-16)B.[-18,-16]C.(-22,-18)D.(-20,-18)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的半焦距為c,若直線y=2x與橢圓的一個交點的橫坐標恰好為c,則橢圓的離心率為( 。
A.$1-\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}-\frac{1}{2}$C.$\sqrt{2}-1$D.$\sqrt{3}-1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的一個焦點與拋物線y2=4x的焦點相同,F(xiàn)1,F(xiàn)2為橢圓的左、右焦點.M為橢圓上任意一點,△MF1F2面積的最大值為1.
(1)求橢圓C的方程;
(2)直線l:y=kx+m(m≠0)交橢圓C于A,B兩點.
①若x軸上任意一點到直線AF2與BF2距離相等,求證:直線l過定點,并求出該定點的坐標;
若直線l的斜率是直線OA,OB斜率的等比中項,求△AOB面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.平行四邊形ABCD中,AC為一條對角線,若$\overrightarrow{AB}$=(3,4),$\overrightarrow{AC}$=(2,7),則$\overrightarrow{AD}$•$\overrightarrow{BD}$等于( 。
A.-1B.1C.-3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.各項均為正數(shù)的等比數(shù)列{an}滿足a2=3,a4-2a3=9,
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=(n+1)•log3an+1,數(shù)列$\left\{{\frac{1}{b_n}}\right\}$前n項和$T_n^{\;}$,在(1)的條件下,證明不等式Tn<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若點(a,b)在函數(shù)f(x)=lnx的圖象上,則下列點中不在函數(shù)f(x)圖象上的是( 。
A.($\frac{1}{a}$,-b)B.(a+e,1+b)C.($\frac{e}{a}$,1-b)D.(a2,2b)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設(shè)等差數(shù)列{an}的前n項和為Sn,a22=37,S22=352.
(1)求數(shù)列{an}的通項公式;
(2)若bn=an•2${\;}^{{a}_{n+1}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案