在等差數(shù)列(an)中,已知an=-2n+9,則當(dāng)n=
 
時(shí),前n項(xiàng)和Sn有最大值.
分析:先根據(jù)數(shù)列的通項(xiàng)公式判斷出數(shù)列的前4項(xiàng)的和為正,從第五項(xiàng)開(kāi)始為負(fù),進(jìn)而推斷出數(shù)列的前4項(xiàng)的和最大.
解答:解:令-2n+9≥0,求得n≤
9
2

∴n≤4,即數(shù)列的前4項(xiàng)為正,從第5項(xiàng)開(kāi)始為負(fù)
故數(shù)列前4項(xiàng)的和最大.
故答案為4
點(diǎn)評(píng):本題主要考查了等差數(shù)列的性質(zhì)及前n項(xiàng)的和.解此類題的關(guān)鍵是判斷出數(shù)列所有的正數(shù)項(xiàng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列(an){ }中a4+a6+a8+a10+a12=120,則2a9-a10=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在等差數(shù)列{an}中,a1<0,S25S45,若Sn最小,則n

A.25                                   B.35                             C.36                                   D.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,a3+a12=60,,則其通項(xiàng)公式為             .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,若aa+ab=12,SN是數(shù)列{an}的前n項(xiàng)和,則SN的值為    (    )

    A.48              B.54              C.60              D.66

查看答案和解析>>

同步練習(xí)冊(cè)答案