精英家教網如圖,正六邊形ABCDEF的兩個頂點A、D為橢圓的兩個焦點,其余4個頂點在橢圓上,則該橢圓的離心率是( 。
A、
3
B、
3
+1
C、
2
D、
3
-1
分析:先連接AE,則AE⊥DE.設AD=2c,則可求得DE和AE,進而由橢圓的定義知AE|+|ED|=
3
c+c求得a,最后根據離心率公式求得答案.
解答:解:連接AE,則AE⊥DE.設|AD|=2c,則|DE|=c,|AE|=
3
c.
橢圓定義,得2a=|AE|+|ED|=
3
c+c,
所以e=
c
a
=
2
3
+1
=
3
-1,
故選D、
點評:本題主要考查了橢圓的簡單性質.特別是橢圓定義的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

9、如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB則下列結論正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,P是邊長為1的正六邊形ABCDEF所在平面外一點,P在平面ABC內的射影為BF的中點O且PO=1,
(Ⅰ)證明PA⊥BF;
(Ⅱ)求面APB與面DPB所成二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

16、如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結論中:
①PB⊥AE;②平面ABC⊥平面PBC;③直線BC∥平面PAE;④∠PDA=45°.
其中正確的有
①④
(把所有正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,給出下列結論:①PB⊥AE;②平面ABC⊥平面PBC;③直線BC∥平面PAE;④∠PDA=45°;⑤直線PD與平面PAB所成角的余弦值為
10
4
.其中正確的有
①④⑤
①④⑤
(把所有正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•天門模擬)已知如圖,六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC.則下列結論正確的個數(shù)是(  )
①CD∥平面PAF   ②DF⊥平面PAF  ③CF∥平面PAB   ④CF∥平面PAD.

查看答案和解析>>

同步練習冊答案