已知數(shù)列:4,a,12,b中,前三個數(shù)成等差數(shù)列,后三個數(shù)成等比數(shù)列,則b=( 。
A、20B、18C、16D、14
考點:等差數(shù)列的性質(zhì),等比數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:利用等差數(shù)列的性質(zhì)求出a,再用等比數(shù)列的性質(zhì)求出b即可.
解答: 解:∵數(shù)列:4,a,12,b中,前三個數(shù)成等差數(shù)列,
∴2a=4+12,
∴a=8,
∵后三個數(shù)成等比數(shù)列,
∴144=ab,
∴b=18.
故選:B.
點評:本題考查等差數(shù)列、等比數(shù)列的性質(zhì),考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cot(
π
4
x-
π
2
),x∈(2,6)的圖象與x軸交于A點,過點A的直線l與函數(shù)的圖象交于B,C兩點,則(
OB
+
OC
)•
OA
=( 。
A、4B、8C、16D、32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U={1,2,3,4},集合S={l,3},T={4},則(∁US)∪T等于( 。
A、{2,4}B、{4}
C、∅D、{1,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=xlnx的減區(qū)間為(  )
A、(-∞,
1
e
B、(
1
e
,+∞)
C、(0,
1
e
D、(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c均為正數(shù),且(
1
2
a=log2a,(
1
2
b=log 
1
2
b,2c=log 
1
2
c,則a,b,c的大小關(guān)系是( 。
A、a<b<c
B、c<b<a
C、c<a<b
D、b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若lg2=a,lg3=b,則log26=(  )
A、
2b
a
B、
b
a
C、
a+b
a
D、
a+b
a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}滿足a7+a8+a3=15,函數(shù)fn(x)=sin(
π
n
x+
π
3
),那么f5(a6)的值為( 。
A、
3
2
B、-
3
2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1)求PB和平面PAD所成的角的大。
(2)證明:AE⊥平面PCD;
(3)求二面角A-PD-C得到正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)xOy中,不等式組
-1≤x≤2
0≤y≤2
表示的平面區(qū)域為W,從區(qū)域W中隨機(jī)任取一點M(x,y).
(1)若x∈R,y∈R,求|OM|≥1的概率;
(2)若x∈Z,y∈Z,求點M位于第一象限的概率.

查看答案和解析>>

同步練習(xí)冊答案