已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0),的一條漸近線方程是y=
3
x,它的一個(gè)焦點(diǎn)在直線x=-6上,則雙曲線的方程為(  )
A、
x2
36
-
y2
108
=1
B、
x2
9
-
y2
27
=1
C、
x2
108
-
y2
36
=1
D、
x2
27
-
y2
9
=1
分析:由雙曲線方程為 
x2
a2
-
y2
b2
=1一個(gè)焦點(diǎn)在直線x=-6上得到焦點(diǎn)(-6,0),由6=
a2+b2
  ①,和 
b
a
=
3
②,解方程組求得 a2,b2 的值.
解答:解:因雙曲線方程為 
x2
a2
-
y2
b2
=1,由題意得c=6=
a2+b2
  ①,
b
a
=
3
②,
由 ①②得b2=27,a2=9,故所求的雙曲線方程為
x2
9
-
y2
27
=1
,
故選B.
點(diǎn)評(píng):本題考查利用待定系數(shù)法求雙曲線的標(biāo)準(zhǔn)方程的方法,以及雙曲線的簡(jiǎn)單性質(zhì)得應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
7
=1
,直線l過(guò)其左焦點(diǎn)F1,交雙曲線的左支于A、B兩點(diǎn),且|AB|=4,F(xiàn)2為雙曲線的右焦點(diǎn),△ABF2的周長(zhǎng)為20,則此雙曲線的離心率e=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
的一個(gè)焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,且該雙曲線的離心率為
5
,則該雙曲線的漸近線方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(b>a>0)
,O為坐標(biāo)原點(diǎn),離心率e=2,點(diǎn)M(
5
,
3
)
在雙曲線上.
(1)求雙曲線的方程;
(2)若直線l與雙曲線交于P,Q兩點(diǎn),且
OP
OQ
=0
.問(wèn):
1
|OP|2
+
1
|OQ|2
是否為定值?若是請(qǐng)求出該定值,若不是請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知直線l:kx-y+1+2k=0(k∈R),則該直線過(guò)定點(diǎn)
(-2,1)
(-2,1)
;
(2)已知雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為y=
4
3
x,則雙曲線的離心率為
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)滿足
a1
b
2
 |=0
,且雙曲線的右焦點(diǎn)與拋物線y2=4
3
x
的焦點(diǎn)重合,則該雙曲線的方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案