已知數(shù)列{an}是首項為a1=,公比q=的等比數(shù)列.設(n∈N*),數(shù)列{cn}滿足
(Ⅰ)求證:數(shù)列{bn}成等差數(shù)列;
(Ⅱ)求數(shù)列{cn}的前n項和Sn
【答案】分析:(Ⅰ)依題意,可求得an=,從而可求得bn=3n-2;利用等差數(shù)列的定義判斷即可;
(Ⅱ)利用裂項法可求得cn=-),從而可求得數(shù)列{cn}的前n項和Sn
解答:證明:(Ⅰ)∵數(shù)列{an}是首項為a1=,公比q=的等比數(shù)列,
∴an==
∵bn+2=3an=3=3n(n∈N*),
∴bn=3n-2;
∴bn+1-bn=3(n+1)-2-(3n-2)=3,
∴數(shù)列{bn}是以1為首項,3為公差的成等差數(shù)列.
(Ⅱ)∵cn===-),
∵數(shù)列{cn}的前n項和為Sn,
∴Sn=c1+c2+…+cn
=[(1-)+(-)+…+(-)]
=(1-
=
點評:本題考查等差關系的確定及數(shù)列的求和,突出考查對數(shù)的運算性質(zhì)及等比數(shù)列的通項公式與等差數(shù)列的判定,考查裂項法求和,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是首項為3,公差為2的等差數(shù)列,其前n項和為Sn,數(shù)列{bn}為等比數(shù)列,且b1=1,bn>0,數(shù)列{ban}是公比為64的等比數(shù)列.
(Ⅰ)求{an},{bn}的通項公式;
(Ⅱ)求證:
1
S1
+
1
S2
+…+
1
Sn
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是首項a1=
1
4
的等比數(shù)列,其前n項和Sn中S3,S4,S2成等差數(shù)列,
(1)求數(shù)列{an}的通項公式;
(2)設bn=log
1
2
|an|,若Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
,求證:
1
6
≤Tn
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是首項為1的等差數(shù)列,且公差不為零,而等比數(shù)列{bn}的前三項分別是a1,a2,a6
(I)求數(shù)列{an}的通項公式an
(II)若b1+b2+…bk=85,求正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是首項為1,公差為2的等差數(shù)列,又數(shù)列{bn}的前n項和Sn=nan
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)若cn=
1bn(2an+3)
,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是首項a1=a,公差為2的等差數(shù)列,數(shù)列{bn}滿足2bn=(n+1)an;
(1)若a1、a3、a4成等比數(shù)列,求數(shù)列{an}的通項公式;
(2)若對任意n∈N*都有bn≥b5成立,求實數(shù)a的取值范圍;
(3)數(shù)列{cn}滿足 cn+1-cn=(
12
)n(n∈N*)
,其中c1=1,f(n)=bn+cn,當a=-20時,求f(n)的最小值(n∈N*).

查看答案和解析>>

同步練習冊答案