如圖10-15,在棱長為4的正方體ABCD—A1B1C1D1中,O是正方形A1B1C1D1的中心,點P在棱CC1上,且CC1=4CP。
(1)求直線AP與平面BCC1B1所成角的大。ńY(jié)果用反三角表示);
(2)設(shè)O點在平面D1AP上的射影為H,求證:D1H⊥AP;
(3)求點P到平面ABD1的距離。
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列{log2(an-1)}(n∈N*) 為等差數(shù)列,且a1=3,a2=5,則
= ( )
A.2 B. C.1 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點,作EF⊥PB于點F.
(1)證明:PA//平面EDB;
(2)證明:BP⊥平面EFD;
(3)求二面角C—PD—D的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,直四棱柱ABCD—A1B1C1D1的底面ABCD為平行四邊形,其中AB=,BD=BC=1,AA1=2,E為DC中點,點F在DD1上,且DF=。
(1)求異面直線BD與A1D1的距離;
(2)EF與BC1是否垂直?請說明理由;
(3)求二面角E—FB—D的正切值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在正四棱錐S—ABCD中,E是BC的中點,P點在側(cè)面△SCD內(nèi)及其邊界上運動,并且總有PE⊥AC。
(1)證明SB⊥AC;
(2)指出動點P的軌跡,并證明你的結(jié)論;
(3)以軌跡上的動點P為頂點的三棱錐P—CDE的最大體積為V1,正四棱錐S—ABCD的體積為V,則V1:V等于多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在四棱錐V-ABCD中,底面ABCD是正方形,側(cè)面VAD是正三角形,平面VAD⊥底面ABCD,如圖11-12。
(1)證明:AB⊥平面VAD;
(2)求二面角A-VD-B的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某高校甲、乙、丙、丁四個專業(yè)分別有150、150、400、300名學(xué)生.為了解學(xué)生的就業(yè)傾向,用分層抽樣的方法從該校這四個專業(yè)共抽取40名學(xué)生進(jìn)行調(diào)查,應(yīng)在丙專業(yè)抽取的學(xué)生人數(shù)為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com