【題目】如圖,多面體, 是正方形, 是梯形, , 平面, 分別為棱的中點(diǎn)

求證:平面平面;

求平面和平面所成銳二面角的余弦值

【答案】見解析

【解析】試題分析:(1通過證明平面,所以平面平面.(2)建立空間直角坐標(biāo)系,求出平面和平面的法向量,求二面角的余弦值。

試題解析:

, 是正方形

分別為棱的中點(diǎn)

平面

平面從而

, 中點(diǎn)

平面

平面

所以平面平面

(Ⅱ)由已知, 兩兩垂直如圖,建立空間直角坐標(biāo)系,設(shè),

, ,

,

平面的一個(gè)法向量為

,

由(Ⅰ)可知平面

∴平面的一個(gè)法向量為

設(shè)平面和平面所成銳二面角為,

所以平面和平面所成銳二面角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體ABCD中,△ABC是等邊三角形,平面ABC⊥平面ABD,點(diǎn)M為棱AB的中點(diǎn),AB=2AD=,BAD=90°

求證:ADBC;

求異面直線BCMD所成角的余弦值;

(Ⅲ)求直線CD與平面ABD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)上的單調(diào)性;

(2)證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐,

當(dāng)時(shí),證明平面平面

當(dāng)四棱錐的體積為,且二面角為鈍角時(shí)求直線與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是定義在R上的函數(shù),對(duì)任意的,恒有,且當(dāng)時(shí), .

(1)的值;

(2)求證:對(duì)任意,恒有.

(3)求證:R上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】寫出下列命題的否定,并判斷其真假:

(1)任何有理數(shù)都是實(shí)數(shù);

(2)存在一個(gè)實(shí)數(shù),能使成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某建材商場(chǎng)國(guó)慶期間搞促銷活動(dòng),規(guī)定:如果顧客選購(gòu)物品的總金額不超過600元,則不享受任何折扣優(yōu)惠;如果顧客選購(gòu)物品的總金額超過600元,則超過600元部分享受一定的折扣優(yōu)惠,折扣優(yōu)惠按下表累計(jì)計(jì)算.

某人在此商場(chǎng)購(gòu)物獲得的折扣優(yōu)惠金額為30元,則他實(shí)際所付金額為____元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,從一個(gè)面積為的半圓形鐵皮上截取兩個(gè)高度均為的矩形,并將截得的兩塊矩形鐵皮分別以為母線卷成兩個(gè)高均為的圓柱(無底面,連接部分材料損失忽略不計(jì)).記這兩個(gè)圓柱的體積之和為

(1)將表示成的函數(shù)關(guān)系式,并寫出的取值范圍;

(2)求兩個(gè)圓柱體積之和的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的圖像過點(diǎn),且在點(diǎn)處的切線方程為.

1)求的解析式;

2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案