【題目】下列命題是假命題的是(
A.?φ∈R,函數(shù)f(x)=sin(2x+φ)都不是偶函數(shù)
B.?α,β∈R,使cos(α+β)=cosα+cosβ
C.向量 =(﹣2,1), =(﹣3,0),則 方向上的投影為2
D.“|x|≤1”是“x<1”的既不充分也不必要條件

【答案】A
【解析】解:A當(dāng)φ= 時(shí),函數(shù)f(x)=sin(2x+ )=cos2x是偶函數(shù),故錯(cuò)誤; B當(dāng)α=﹣ ,β= 時(shí),能使cos(α+β)=cosα+cosβ,故正確;
C則 方向上的投影為 =2,故正確;
D“|x|≤1,則﹣1≤x≤1,故是“x<1”的既不充分也不必要條件,故正確;
故選A.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識(shí),掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,E,G分別在邊DA,DC上(不與端點(diǎn)重合),且DE=DG,過(guò)D點(diǎn)作DF⊥CE,垂足為F. (Ⅰ)證明:B,C,G,F(xiàn)四點(diǎn)共圓;
(Ⅱ)若AB=1,E為DA的中點(diǎn),求四邊形BCGF的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a,b,c,d均為正數(shù),且a+b=c+d,證明:
(1)若ab>cd,則 + + ;
(2) + + 是|a﹣b|<|c﹣d|的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某中學(xué)甲、乙兩班共有25名學(xué)生報(bào)名參加了一項(xiàng) 測(cè)試.這25位學(xué)生的考分編成的莖葉圖,其中有一個(gè)數(shù)據(jù)因電腦操作員不小心刪掉了(這里暫用x來(lái)表示),但他清楚地記得兩班學(xué)生成績(jī)的中位數(shù)相同.

)求這兩個(gè)班學(xué)生成績(jī)的中位數(shù)及x的值;

)如果將這些成績(jī)分為優(yōu)秀(得分在175分 以上,包括175分)和過(guò)關(guān),若學(xué)校再?gòu)倪@兩個(gè)班獲得優(yōu)秀成績(jī)的考生中選出3名代表學(xué)校參加比賽,求這3人中甲班至多有一人入選的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直角梯形所在的平面垂直于平面,,,.

(1)若的中點(diǎn),求證:平面;

(2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)的定義域?yàn)?/span>R,對(duì)任意,有>-1,且f(1)=1,下列命題正確的是( 。

A. 是單調(diào)遞減函數(shù)

B. 是單調(diào)遞增函數(shù)

C. 不等式的解集為

D. 不等式的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)y=f(x)的定義域?yàn)镈,若對(duì)于任意的x1 , x2∈D,當(dāng)x1+x2=2a時(shí),恒有f(x1)+f(x2)=2b,則稱點(diǎn)(a,b)為函數(shù)y=f(x)的對(duì)稱中心.研究函數(shù)f(x)=x+sinπx﹣3的某個(gè)對(duì)稱中心,并利用對(duì)稱中心的上述定義,可求得f( )+f( )+…+f( )+f( )的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在上的可導(dǎo)函數(shù)的導(dǎo)函數(shù)為,滿足,且為偶函數(shù),,則不等式的解集為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C的方程為y2=2px(p>0),點(diǎn)R(1,2)在拋物線C上.
(1)求拋物線C的方程;
(2)過(guò)點(diǎn)Q(1,1)作直線交拋物線C于不同于R的兩點(diǎn)A,B.若直線AR,BR分別交直線l:y=2x+2于M,N兩點(diǎn),求線段MN最小時(shí)直線AB的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案