3.若二次函數(shù)f(x)=cx2+4x+a(x∈R)的值域?yàn)閇0,+∞),則$\frac{1}{a}$+$\frac{9}{c}$的最小值為( 。
A.3B.$\frac{9}{2}$C.5D.7

分析 先判斷a、c是正數(shù),且ac=4,把所求的式子變形使用基本不等式求最小值.

解答 解:若二次函數(shù)f(x)=cx2+4x+a(x∈R)的值域?yàn)閇0,+∞),
則c>0,△=16-4ac=0,即ac=4,
則 $\frac{1}{a}$+$\frac{9}{c}$≥2×$\sqrt{\frac{9}{ac}}$=3,當(dāng)且僅當(dāng)$\frac{1}{a}$=$\frac{9}{c}$時(shí)取等號,
則$\frac{1}{a}$+$\frac{9}{c}$的最小值是3,
故選:A.

點(diǎn)評 本題考查函數(shù)的值域及基本不等式的應(yīng)用,求解的關(guān)鍵就是拆項(xiàng),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某車間共有12名工人,隨機(jī)抽取6名,他們某日加工零件個(gè)數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個(gè)位數(shù).
(Ⅰ)根據(jù)莖葉圖計(jì)算樣本均值;
(Ⅱ)日加工零件個(gè)數(shù)大于樣本均值的工人為優(yōu)秀工人,根據(jù)莖葉圖推斷該車間12名工人中有幾名優(yōu)秀工人?
(Ⅲ)在(Ⅱ)的條件下,從該車間12名工人中,任取3人,求恰有1名優(yōu)秀工人的情況有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,側(cè)棱垂直于底面的三棱柱ABC-A1B1C1中,AB⊥AC,AA1+AB+AC=3,AB=AC=t(t>0),P是側(cè)棱AA1上的動點(diǎn).
(1)當(dāng)AA1=AB=AC時(shí),求證:A1C⊥BC1
(2)試求三棱錐P-BCC1的體積V取得最大值時(shí)的t值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在正三棱錐P-ABC中,D,E分別是AB,BC的中點(diǎn).
(1)求證:DE∥平面PAC;
(2)求證:AB⊥PC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.拋物線x=2y2的焦點(diǎn)坐標(biāo)是( 。
A.(1,0)B.($\frac{1}{2}$,0)C.($\frac{1}{8}$,0)D.(0,$\frac{1}{8}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知拋物線y2=2px(p>0)上一點(diǎn)M(1,b)到焦點(diǎn)F的距離為2,則b=±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,橢圓C的四個(gè)頂點(diǎn)圍成的四邊形的面積為4$\sqrt{3}$.
(1)求橢圓C的方程;
(2)直線l與橢圓C交于P(x1,y1),Q(x2,y2)兩個(gè)不同點(diǎn),O為坐標(biāo)原點(diǎn),若△OPQ的面積為$\sqrt{3}$,證明:y12+y22為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,離心率e=$\frac{\sqrt{2}}{2}$,順次連接橢圓四個(gè)頂點(diǎn)所得四邊形的面積為2$\sqrt{2}$.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知直線l與橢圓相交于M,N兩點(diǎn),O為原點(diǎn),若點(diǎn)O在以MN為直徑的圓上,試求點(diǎn)O到直線l的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.命題“?x0∈R,x02+sinx0+e${\;}^{{x}_{0}}$<1”的否定是(  )
A.?x0∈R,x02+sinx0+e${\;}^{{x}_{0}}$>1B.?x0∈R,x02+sinx0+e${\;}^{{x}_{0}}$≥1
C.?x∈R,x2+sinx+ex>1D.?x∈R,x2+sinx+ex≥1

查看答案和解析>>

同步練習(xí)冊答案