與直線l : y=2x+3平行,且與圓x2y2-2x-4y+4=0相切的直線方程是(     ).

A.xy±=0                         B.2xy=0

C.2xy=0                        D.2xy±=0

D

解析:設所求直線方程為y=2xb,即2xyb=0.圓x2y2—2x—4y+4=0的標準方程為(x-1)2+(y-2)2=1.由=1解得b=±

故所求直線的方程為2xy±=0.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:云南省祥云一中2010屆高三第四次月考(數(shù)學理)普通班 題型:013

曲線C:y=1+與直線l:y=k(x-2)+4有兩個交點時,實數(shù)k的取值范圍是

[  ]
A.

(]

B.

(,+∞)

C.

(0,)

D.

(,)

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇五校高三下學期期初教學質(zhì)量調(diào)研數(shù)學卷(解析版) 題型:解答題

在平面直角坐標系xOy中,如圖,已知橢圓C的上、下頂點分別為AB,點P在橢圓C上且異于點A、B,直線APPB與直線ly=-2分別交于點M、N.

(1)設直線AP、PB的斜率分別為k1,k2,求證:k1·k2為定值;

(2)求線段MN長的最小值;

(3)當點P運動時,以MN為直徑的圓是否經(jīng)過某定點?請證明你的結論.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

動點Px軸與直線ly=3之間的區(qū)域(含邊界)上運動,且到點F(0,1)和直線l的距離之和為4.

(1)求點P的軌跡C的方程;

(2)過點作曲線C的切線,求所作的切線與曲線C所圍成區(qū)域的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

動點Px軸與直線ly=3之間的區(qū)域(含邊界)上運動,且到點F(0,1)和直線l的距離之和為4.

(1)求點P的軌跡C的方程;

(2)過點作曲線C的切線,求所作的切線與曲線C所圍成區(qū)域的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

動點P在x軸與直線l:y=3之間的區(qū)域(含邊界)上運動,且到點F(0,1)和直線l的距離之和為4.

(1)求點P的軌跡C的方程;

(2)過點Q(0,-1)作曲線C的切線,求所作的切線與曲線C所圍成區(qū)域的面積.

查看答案和解析>>

同步練習冊答案