要在墻上開一個(gè)上半部為半圓形、下部為矩形的窗戶(如圖所示),在窗框?yàn)槎ㄩL的條件下,要使窗戶能夠透過最多的光線,窗戶應(yīng)設(shè)計(jì)成怎樣的尺寸?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第四章第1課時(shí)練習(xí)卷(解析版) 題型:解答題
在△ABC中,E、F分別為AC、AB的中點(diǎn),BE與CF相交于G點(diǎn),設(shè)=a,=b,試用a,b表示.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第2課時(shí)練習(xí)卷(解析版) 題型:解答題
某營養(yǎng)師要為某個(gè)兒童預(yù)訂午餐和晚餐.已知一個(gè)單位的午餐含12個(gè)單位的碳水化合物、6個(gè)單位的蛋白質(zhì)和6個(gè)單位的維生素C;一個(gè)單位的晚餐含8個(gè)單位的碳水化合物、6個(gè)單位的蛋白質(zhì)和10個(gè)單位的維生素C.另外,該兒童這兩餐需要的營養(yǎng)中至少含64個(gè)單位的碳水化合物、42個(gè)單位的蛋白質(zhì)和54個(gè)單位的維生素C.
如果一個(gè)單位的午餐、晚餐的費(fèi)用分別是2.5元和4元,那么要滿足上述的營養(yǎng)要求,并且花費(fèi)最少,應(yīng)當(dāng)為該兒童分別預(yù)訂多少個(gè)單位的午餐和晚餐?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第2課時(shí)練習(xí)卷(解析版) 題型:填空題
已知實(shí)數(shù)x、y滿足則z=2x+y的最小值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第1課時(shí)練習(xí)卷(解析版) 題型:解答題
甲廠以x千克/小時(shí)的速度運(yùn)輸生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每小時(shí)可獲得利潤是100(5x+1-)元.
(1)要使生產(chǎn)該產(chǎn)品2小時(shí)獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第1課時(shí)練習(xí)卷(解析版) 題型:解答題
已知關(guān)于x的不等式:<1.
(1)當(dāng)a=1時(shí),解該不等式;
(2)當(dāng)a>0時(shí),解該不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第6課時(shí)練習(xí)卷(解析版) 題型:解答題
如圖,在三棱柱ABCA1B1C1中,A1B⊥平面ABC,AB⊥AC,且AB=AC=A1B=2.
(1)求棱AA1與BC所成的角的大;
(2)在棱B1C1上確定一點(diǎn)P,使二面角P-AB-A1的平面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第6課時(shí)練習(xí)卷(解析版) 題型:填空題
已知空間四邊形OABC,點(diǎn)M、N分別是OA、BC的中點(diǎn),且=a,=b,=c,用a,b,c表示向量=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第4課時(shí)練習(xí)卷(解析版) 題型:填空題
設(shè)a、b為不重合的兩條直線,α、β為不重合的兩個(gè)平面,給出下列命題:
①若a∥α且b∥α,則a∥b;②若a⊥α且b⊥α,則a∥b;③若a∥α且a∥β,則α∥β;④若a⊥α且a⊥β,則α∥β.其中為真命題的是________.(填序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com