已知M=[
1-2
-21
],α=[
 
1
3
],試計算M20α.
分析:欲求M20α,先利用矩陣M的特征多次式求得其對應(yīng)的特征向量,由特征向量的性質(zhì)求得M20α,最后即可求得結(jié)果.
解答:解:矩陣M的特征多次式為f(λ)=(λ-1)2-4=0,λ1=3,λ2=-1,
對應(yīng)的特征向量分別為
1 
-1 
1 
1 

而α=-
1 
-1 
+2
1 
1 
,
∴M20α=-320
1 
-1 
+2(-1)20
1 
1 
=
-320+2 
320+2 
點評:本題主要考查矩陣變換的性質(zhì),考查由已知變換的點求未知的變換矩陣,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(1,
1
3
)
是函數(shù)f(x)=ax(a>0且a≠1)的圖象上一點,等比數(shù)列an的前n項和為f(n)-c,數(shù)列bn(bn>0)的首項為c,且前n項和Sn滿足:Sn-Sn-1=
Sn
 + 
Sn-1
(n≥ 2)
.記數(shù)列{
1
bnbn+1
}
前n項和為Tn
(1)求數(shù)列an和bn的通項公式;
(2)若對任意正整數(shù)n,當(dāng)m∈[-1,1]時,不等式t2-2mt+
1
2
Tn
恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于集合M,定義函數(shù)fM(x)=
-1,x∈M
1,x∉M
,對于兩個集合M,N,定義集合M?N={x|fM(x)•fN(x)=-1}.已知A={1,2,3,4,5,6},B={1,3,9,27,81}.
(Ⅰ)寫出fA(2)與fB(2)的值,并用列舉法寫出集合A?B;
(Ⅱ)用Card(M)表示有限集合M所含元素的個數(shù),求Card(X?A)+Card(X?B)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•煙臺一模)已知拋物線y2=2px(p>0)上一點M(1,m)(m>0)到其焦點F的距離為5,則以M為圓心且與y軸相切的圓的方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)一模)對于集合M,定義函數(shù)fM(x)=
-1,x∈M
1,x∉M
,對于兩個集合M,N,定義集合M?N={x|fM(x)•fN(x)=-1.已知A={1,2,3,4,5,6},B={1,3,9,27,81}.
(Ⅰ)寫出fA(2)與fB(2)的值,并用列舉法寫出集合A?B;
(Ⅱ)用Card(M)表示有限集合M所含元素的個數(shù),求Card(X?A)+Card(x?b)的最小值;
(Ⅲ)有多少個集合對(P,Q),滿足P,Q⊆A∪B,且(P?A)?(Q?B)=A?B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M={1,2,(a-1)+(b-5)i},N={-1,3},M∩N={3},實數(shù)a與b的值分別是( 。

查看答案和解析>>

同步練習(xí)冊答案