已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對定義域每的任意恒成立,求實數(shù)的取值范圍;
(Ⅲ)證明:對于任意正整數(shù),不等式恒成立。
. 。
(Ⅰ)當時,若,則,若,則,故此時函數(shù)的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是;
當時,的變化情況如下表:
單調(diào)遞增 |
極大值 |
單調(diào)遞減 |
極小值 |
單調(diào)遞增 |
所以函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;
當時,,函數(shù)的單調(diào)遞增區(qū)間是;
當時,同可得,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是。
(Ⅱ)由于,顯然當時,,此時對定義域每的任意不是恒成立的,
當時,根據(jù)(1),函數(shù)在區(qū)間的極小值、也是最小值即是,此時只要即可,解得,故得實數(shù)的取值范圍是。
(Ⅲ)當時,,等號當且僅當成立,這個不等式即,當時,可以變換為,
在上面不等式中分別令,
所以
【解析】略
科目:高中數(shù)學 來源: 題型:
1 |
2 |
3 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆江西省高三上學期第二次月考文科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若對任意,函數(shù)在上都有三個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011年廣東省東莞市教育局教研室高三上學期數(shù)學文卷 題型:解答題
(本小題滿分分)
已知函數(shù).
(1)求函數(shù)的最大值;
(2)在中,,角滿足,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com