(本題滿分14分)

如圖,在一條筆直的高速公路的同旁有兩個城鎮(zhèn),它們與的距離分別是上的射影之間距離為,現(xiàn)計劃修普通公路把這兩個城鎮(zhèn)與高速公路相連接,若普通公路造價為萬元/;而每個與高速公路連接的立交出入口修建費用為萬元.設計部門提交了以下三種修路方案:

方案①:兩城鎮(zhèn)各修一條普通公路到高速公路,并各修一個立交出入口;

方案②:兩城鎮(zhèn)各修一條普通公路到高速公路上某一點,并

點修一個公共立交出入口;

方案③:從修一條普通公路到,再從修一條普通公路到

高速公路,也只修一個立交出入口.

請你為這兩個城鎮(zhèn)選擇一個省錢的修路方案.

解:方案①:共修普通公路和兩個立交出入口,

所需資金為萬元;                   (3分)

方案②:取關于的對稱點,連交于,

修一個出入口,則路程最短,共需資金:

萬元;         (6分)

方案③:連接沿修路,在修一個出入口,共需資金:

萬元       (9分)

由于,比較大小有,(12分)故選擇方案(3).      (14分)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(本題滿分14分
A.選修4-4:極坐標與參數(shù)方程在極坐標系中,直線l 的極坐標方程為θ=
π
3
(ρ∈R ),以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,曲線C的參數(shù)方程為
x=2cosα
y=1+cos2α
(α 參數(shù)).求直線l 和曲線C的交點P的直角坐標.
B.選修4-5:不等式選講
設實數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時x,y,z 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AEEBBC=2,上的點,且BF⊥平面ACE

(1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省高三上學期期中考試數(shù)學 題型:解答題

(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求實數(shù)m的值

(Ⅱ)若ACRB,求實數(shù)m的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省高三上學期第三次月考理科數(shù)學卷 題型:解答題

(本題滿分14分)

已知點是⊙上的任意一點,過垂直軸于,動點滿足

(1)求動點的軌跡方程; 

(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點,使 (O是坐標原點),若存在,求出直線的方程,若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江西省高一第二學期入學考試數(shù)學 題型:解答題

(本題滿分14分)已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷的奇偶性;

(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使

;如果沒有,請說明理由?(注:區(qū)間的長度為).

 

查看答案和解析>>

同步練習冊答案