精英家教網 > 高中數學 > 題目詳情
設函數f(x)=ax2+bx+c(a>0)且f(1)=-
a
2

(1)求證:函數f(x)有兩個零點;
(2)設x1,x2是函數的兩個零點,求|x1-x2|的取值范圍.
(1)證明:由函數f(x)=ax2+bx+c(a>0)且f(1)=-
a
2
,可得 a+b+c=-
a
2
,即 c=-
3a
2
-b.
故判別式△=b2-4ac=b2-4a(-
3a
2
-b)
=(b+2a)2+2a2>0,函數f(x)有兩個零點.
(2)設x1,x2是函數的兩個零點,則 x1+x2=-
b
a
,x1x2=
c
a
,
∴|x1-x2|=
(x1+x2)2-4x1x2
=
(-
b
a
)
2
-4•
c
a
=
b2-4ac
a2
=
b2+4ab+6a2
a2
=
(
b
a
)
2
+4•
b
a
+6
=
(
b
a
+2)
2
+2
2

故|x1-x2|的取值范圍為[
2
,+∞).
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

設函數f(x)=
1
x
,g(x)=-x2+bx.若y=f(x)的圖象與y=g(x)的圖象有且僅有兩個不同的公共點A(x1,y1),B(x2,y2),則下列判斷正確的是( 。
A.x1+x2>0,y1+y2>0B.x1+x2>0,y1+y2<0
C.x1+x2<0,y1+y2>0D.x1+x2<0,y1+y2<0

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

某市某家電制造集團在家電下鄉(xiāng)運輸中不斷優(yōu)化方案使運輸效率(單位時間的運輸量)逐步提高,則下列圖中能反映實際的運輸量Q隨時間t變化的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設函數y=f(x)的圖象如圖所示,則導函數y=f′(x)可能為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數f(x)=ax2-x-c,且f(x)>0的解集為(-2,1),則函數y=f(x)的圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設f(x)=2x-x2,則在下列區(qū)間中使函數f(x)有零點的區(qū)間是( 。
A.[0,1]B.[1,2)C.[-2,-1]D.[-1,0]

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數f(x)=lnx+2x-6所在的區(qū)間是( 。
A.(0,1)B.(1,2)C.(2,e)D.(e,3)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

給出下列三個函數的圖象:

它們對應的函數表達式分別滿足下列性質中的至少一條:
①對任意實數x,y都有f(xy)=f(x)f(y)成立;
②對任意實數x,y都有
f(x+y)
f(x)
=f(y)
成立;
③對任意實數x,y都有f(x+y)=f(x)+f(y)成立;
④對任意實數x都有f(x+2)=f(x+1)-f(x)成立.
則下列對應關系最恰當的是( 。
A.b和①B.c和②
C.a和④D.以上說法都不正確

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數的圖象大致是(  ).

查看答案和解析>>

同步練習冊答案