【題目】已知圓與直線相切.

(1)若直線與圓交于兩點(diǎn),求;

(2)設(shè)圓軸的負(fù)半軸的交點(diǎn)為,過(guò)點(diǎn)作兩條斜率分別為的直線交圓兩點(diǎn),且,試證明直線恒過(guò)一定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

【答案】(1)(2)定點(diǎn)為

【解析】試題分析:1與直線相切,所以,所以圓,又圓心到直線的距離,根據(jù)勾股定理可得(2)易知,設(shè),則直線,聯(lián)立得,由,將代替上面的,同理可得,

由點(diǎn)斜式寫(xiě)出直線BC, 化簡(jiǎn)得,所以直線恒過(guò)一定點(diǎn),該定點(diǎn)為.

試題解析:

解:(1)由題意知,圓心到直線的距離,

所以圓.

又圓心到直線的距離,

所以.

(2)易知,設(shè),則直線

,得

所以,即,

所以.

,將代替上面的

同理可得,

所以

從而直線.

,

化簡(jiǎn)得.

所以直線恒過(guò)一定點(diǎn),該定點(diǎn)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在幾何體中,底面為矩形, , .點(diǎn)在棱上,平面與棱交于點(diǎn)

(Ⅰ)求證: ;

(Ⅱ)求證:平面平面;

(Ⅲ)若, , ,平面平面,求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨機(jī)抽取了40輛汽車(chē)在經(jīng)過(guò)路段上某點(diǎn)時(shí)的車(chē)速(km/h),現(xiàn)將其分成六段: , , , , , ,后得到如圖所示的頻率分布直方圖.

(Ⅰ)現(xiàn)有某汽車(chē)途經(jīng)該點(diǎn),則其速度低于80km/h的概率約是多少?

(Ⅱ)根據(jù)直方圖可知,抽取的40輛汽車(chē)經(jīng)過(guò)該點(diǎn)的平均速度約是多少?

(Ⅲ)在抽取的40輛且速度在(km/h)內(nèi)的汽車(chē)中任取2輛,求這2輛車(chē)車(chē)速都在(km/h)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)正項(xiàng)數(shù)列{an}的前n項(xiàng)和是Sn , 若{an}和{ }都是等差數(shù)列,且公差相等,則a1=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某機(jī)構(gòu)為調(diào)查2017年下半年落實(shí)中學(xué)生“陽(yáng)光體育”活動(dòng)的情況,設(shè)平均每人每天參加體育鍛煉時(shí)間為(單位:分鐘),按鍛煉時(shí)間分下列四種情況統(tǒng)計(jì):①0~10分鐘;②11~20分鐘;③21~30分鐘;④30分鐘以上,有10000名中學(xué)生參加了此項(xiàng)活動(dòng),圖1是此次調(diào)查中某一項(xiàng)的流程圖,其輸出的結(jié)果是6400,則平均每天參加體育鍛煉時(shí)間在0~20分鐘內(nèi)的學(xué)生的頻率是( )

1

A. 0.64 B. 0.36 C. 6400 D. 3600

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某機(jī)構(gòu)為調(diào)查2017年下半年落實(shí)中學(xué)生“陽(yáng)光體育”活動(dòng)的情況,設(shè)平均每人每天參加體育鍛煉時(shí)間為(單位:分鐘),按鍛煉時(shí)間分下列四種情況統(tǒng)計(jì):①0~10分鐘;②11~20分鐘;③21~30分鐘;④30分鐘以上,有10000名中學(xué)生參加了此項(xiàng)活動(dòng),圖1是此次調(diào)查中某一項(xiàng)的流程圖,其輸出的結(jié)果是6400,則平均每天參加體育鍛煉時(shí)間在0~20分鐘內(nèi)的學(xué)生的頻率是( )

1

A. 0.64 B. 0.36 C. 6400 D. 3600

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線:,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為,且點(diǎn)在直線上.

(1)求曲線的極坐標(biāo)方程和直線的直角坐標(biāo)方程;

(2)設(shè)向左平移個(gè)單位長(zhǎng)度后得到,的交點(diǎn)為, ,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4 坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,圓,曲線的參數(shù)方程為為參數(shù)),并以為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.

(1)寫(xiě)出的極坐標(biāo)方程,并將化為普通方程;

(2)若直線的極坐標(biāo)方程為相交于兩點(diǎn),

的面積(為圓的圓心).

查看答案和解析>>

同步練習(xí)冊(cè)答案