【題目】已知直線的方程為,若在x軸上的截距為,且

求直線的交點坐標(biāo);

已知直線經(jīng)過的交點,且在y軸上截距是在x軸上的截距的2倍,求的方程.

【答案】(1);(2)

【解析】

1)利用l1l2,可得斜率.利用點斜式可得直線l2的方程,與直線l1l2的交點坐標(biāo)為(2,1);

2)當(dāng)直線l3經(jīng)過原點時,可得方程.當(dāng)直線l3不經(jīng)過過原點時,設(shè)在x軸上截距為a0,則在y軸上的截距的2a倍,其方程為:1,把交點坐標(biāo)(2,1)代入可得a

解:(1)∵l1l2,∴2

∴直線l2的方程為:y02x),化為:y2x3

聯(lián)立,解得

∴直線l1l2的交點坐標(biāo)為(21).

2)當(dāng)直線l3經(jīng)過原點時,可得方程:yx

當(dāng)直線l3不經(jīng)過過原點時,設(shè)在x軸上截距為a0,則在y軸上的截距的2a倍,

其方程為:1,把交點坐標(biāo)(21)代入可得:1,解得a

可得方程:2x+y5

綜上可得直線l3的方程為:x2y02x+y50

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確命題的個數(shù)是( )
(1)cosα≠0是 的充分必要條件
(2)f(x)=|sinx|+|cosx|,則f(x)最小正周期是π
(3)若將一組樣本數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后,則樣本的方差不變
(4)設(shè)隨機變量ζ服從正態(tài)分布N(0,1),若P(ζ>1)=p,則
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線,,則下列結(jié)論正確的是( )

A. 上所有的點向右平移個單位長度,再把所有圖象上各點的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),得到曲線

B. 上所有點向左平移個單位長度,再把所得圖象上各點的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變),得到曲線

C. 上各點的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),再把所得圖象上所有的點向左平移個單位長度,得到曲線

D. 上各點的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變),再把所得圖象上所有的點向左平移個單位長度,得到曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我市大學(xué)生創(chuàng)業(yè)孵化基地某公司生產(chǎn)一種“儒風(fēng)鄒城”特色的旅游商品.該公司年固定成本為10萬元,每生產(chǎn)千件需另投入2.7萬元;設(shè)該公司年內(nèi)共生產(chǎn)該旅游商品千件并全部銷售完,每千件的銷售收入為萬元,且滿足函數(shù)關(guān)系:.

(Ⅰ)寫出年利潤(萬元)關(guān)于該旅游商品(千件)的函數(shù)解析式;

(Ⅱ)年產(chǎn)量為多少千件時,該公司在該旅游商品的生產(chǎn)中所獲年利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),f(x)=|x﹣a|
(Ⅰ)當(dāng)a=2,解不等式,f(x)≥5﹣|x﹣1|;
(Ⅱ)若f(x)≤1的解集為[0,2],+=a(m>0,n>0),求證:m+2n≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知=,,函數(shù)是奇函數(shù)。

(1)求a,c的值;

(2)當(dāng)x∈[-l,2]時,的最小值是1,求的解析式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),是偶函數(shù).

(1)求的值;

(2)若函數(shù)的圖象在直線上方,求的取值范圍;

(3)若函數(shù),是否存在實數(shù)使得的最小值為0?若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列類比推理命題(其中為有理數(shù)集,為實數(shù)集,為復(fù)數(shù)集),其中類比結(jié)論正確的是( )

A. “若,則”類比推出“若,則”.

B. 類比推出

C. 類比推出

D. “若,則”類比推出“若,則”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a1=1,an+1= +b(n∈N*
(1)若b=1,求a2 , a3及數(shù)列{an}的通項公式;
(2)若b=﹣1,問:是否存在實數(shù)c使得a2n<c<a2n+1對所有的n∈N*成立,證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案