在平面直角坐標(biāo)系上,設(shè)不等式組
所表示的平面區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133102998214.gif" style="vertical-align:middle;" />,記內(nèi)的整點(diǎn)(即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))的個(gè)數(shù)為.
(Ⅰ)求并猜想的表達(dá)式再用數(shù)學(xué)歸納法加以證明;
(Ⅱ)設(shè)數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和,是否存在自然數(shù)m?使得對(duì)一切,恒成立。若存在,求出m的值,若不存在,請(qǐng)說(shuō)明理由。
(Ⅰ),=3n,(Ⅱ)滿足題設(shè)的自然數(shù)m存在,其值為0
(Ⅰ)當(dāng)n=1時(shí),D1為Rt△OAB1的內(nèi)部包括斜邊,這時(shí)
當(dāng)n=2時(shí),D2為Rt△OAB2的內(nèi)部包括斜邊,這時(shí)
當(dāng)n=3時(shí),D3為Rt△OAB3的內(nèi)部包括斜邊,這時(shí),……, ---3分
由此可猜想=3n。 --------------------------------------------------4分
下面用數(shù)學(xué)歸納法證明:
(1)當(dāng)n=1時(shí),猜想顯然成立。
(2)假設(shè)當(dāng)n=k時(shí),猜想成立,即,() ----5分
如圖,平面區(qū)域為Rt內(nèi)部包括斜邊、平面區(qū)域
Rt△內(nèi)部包括斜邊,∵平面區(qū)域比平面區(qū)域多3
個(gè)整點(diǎn), ------- 7分            
即當(dāng)n=k+1時(shí),,這就是說(shuō)當(dāng)n=k+1時(shí),
猜想也成立,
由(1)、(2)知=3n對(duì)一切都成立。 ---------------------8分
(Ⅱ)∵=3n,  ∴數(shù)列是首項(xiàng)為3,公差為3的等差數(shù)列,
.
  -------------------------10分

== -------------------------------11分
∵對(duì)一切,恒成立,  ∴
上為增函數(shù) ∴ ---13分
,滿足的自然數(shù)為0,
∴滿足題設(shè)的自然數(shù)m存在,其值為0。 -------------------------14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)已知數(shù)列滿足遞推關(guān)系.
(1)在時(shí),求數(shù)列的通項(xiàng);(2) 當(dāng)時(shí),數(shù)列滿足不等式恒成立,求的取值范圍;(3) 在時(shí),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知{an}是正數(shù)組成的數(shù)列,a1=1,且點(diǎn)(,an+1)(n∈N*)在函數(shù)yx2+1的圖象上.(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;(Ⅱ)若列數(shù){bn}滿足b1=1,bn+1bn+2an,求證:bn            ·bn+2b2n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知等差數(shù)列151,149,…,-99,則這個(gè)數(shù)列的最后100項(xiàng)的和是     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)列{an}中,a1 = 1,當(dāng)時(shí),其前n項(xiàng)和滿足
(1)求Sn的表達(dá)式;
(2)設(shè),數(shù)列{bn}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等差數(shù)列滿足:
(1)是否存在常數(shù),使得請(qǐng)對(duì)你的結(jié)論作出正確的解釋或證明;
(2)當(dāng)時(shí),求數(shù)列的通項(xiàng)公式;
(3)若是數(shù)列中的最小項(xiàng),求首項(xiàng)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知是等差數(shù)列,         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

等差數(shù)列中,,前項(xiàng)和為,等比數(shù)列各項(xiàng)均為正數(shù),,且,的公比
(1)求;
(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

下表給出一個(gè)“直角三角形數(shù)陣”:滿足每一列成等差數(shù)列,從第三行起,每一行的數(shù)成等比數(shù)列,且每一行的公比相等,記第行第列的數(shù)為,則
      

查看答案和解析>>

同步練習(xí)冊(cè)答案