(本小題滿分12分)已知橢圓:的離心率,過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),且,求面積的最大值及取得最大值時(shí)橢圓的方程.
:設(shè)橢圓的方程為直線的方程為
,則橢圓方程可化為
,聯(lián)立(*)
而由已知,代入得
所以
當(dāng)且僅當(dāng)時(shí)取等號(hào)由,將代入(*)式得所以面積的最大值為,取得最大值時(shí)橢圓的方程為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2001高考江西、山西、天津)設(shè)坐標(biāo)原點(diǎn)為O,拋物線y2=2x與過(guò)焦點(diǎn)的直線交于AB兩點(diǎn),則等于(   )
A.B.-C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)直角梯形ABCD中, ∠DAB=90°,AD//BC,
AB="2," AD=, BC=,橢圓E以A,B為焦點(diǎn)且經(jīng)過(guò)點(diǎn)D.  (1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求橢圓E的方程;  (2)若點(diǎn)Q滿足:,問(wèn)是否存在不平行AB,的直線與橢圓E交于M、N兩點(diǎn).且|MQ|=|NQ|.若存在,求直線的斜率的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題


A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(原創(chuàng)題)
已知是曲線上一點(diǎn),是該曲線的兩個(gè)焦點(diǎn),若內(nèi)角平分線的交點(diǎn)到三邊上的距離為1,,則的值為   
A.B.C.-D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓+=1與雙曲線=1(m,n,p,q∈R+)有共同的焦點(diǎn)F1、F2,P是橢圓和雙曲線的一個(gè)交點(diǎn),則|PF1|·|PF2|=      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直線l的方程為,且直線lx軸交于點(diǎn)M,圓x軸交于兩點(diǎn)(如圖).
(I)過(guò)M點(diǎn)的直線交圓于兩點(diǎn),且圓孤恰為圓周的,求直線的方程;
(II)求以l為準(zhǔn)線,中心在原點(diǎn),且與圓O恰有兩個(gè)公共點(diǎn)的橢圓方程;

(III)過(guò)M點(diǎn)的圓的切線交(II)中的一個(gè)橢圓于兩點(diǎn),其中兩點(diǎn)在x軸上方,求線段CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
求適合下列條件的圓錐曲線方程:
(1).長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的3倍,經(jīng)過(guò)點(diǎn)(3,0)的橢圓標(biāo)準(zhǔn)方程。
(2).已知雙曲線兩個(gè)焦點(diǎn)的坐標(biāo)為,雙曲線上一點(diǎn)P到兩焦點(diǎn)的距離之差的絕對(duì)值等于6,求雙曲線標(biāo)準(zhǔn)方程.
(3).已知拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線與其平行線x=2的距離為3,求拋物線標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線過(guò)點(diǎn)(-1,2)且與直線垂直,則的方程是 (   )
a.                     b.
c.                     d.

查看答案和解析>>

同步練習(xí)冊(cè)答案