函數(shù)y=asinxbcosx的一條對稱軸方程是x=,則直線axby+c=0的傾斜角是

  A45°    B135°    C60°    D120°

答案:B
提示:

要計算直線的傾斜角,先計算它的斜率。由函數(shù)y=asinxbcosx對稱軸方程的條件可以求出的值。


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知直線x=
π
6
是函數(shù)y=asinx-bcosx圖象的一條對稱軸,則函數(shù)y=bsinx-acosx圖象的一條對稱軸方程是( 。
A、x=
π
6
B、x=
π
3
C、x=
π
2
D、x=
π
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=asinx+2bcosx圖象的一條對稱軸方程是x=
π
4
,則直線ax+by+1=0和直線x+y+2=0的夾角的正切值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知當x=
π
6
時,函數(shù)y=sinx+acosx取最大值,則函數(shù)y=asinx-cosx圖象的一條對稱軸為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=asinx+
1
3
sin3x在x=
π
3
處有極值,則a=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知過橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)右焦點F且斜率為1的直線交橢圓C于A,B兩點,N為弦AB的中點;又函數(shù)y=asinx+3bcosx圖象的一條對稱軸的方程是x=
π
6
.(1)求橢圓C的離心率e與直線AB的方程;(2)對于任意一點M∈C,試證:總存在角θ(θ∈R)使等式
OM
=cosθ
OA
+sinθ
OB
成立.

查看答案和解析>>

同步練習冊答案